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ANNOTATTION

This volume includes the works devoted to the individual
problems of the strength of elements of constructions operating
under conditions of elevated temperatures in the elastic zone.
The rheological and plastic properties have been also considered.
Particular attention has been paid to the study of the perfor-
mance of tubular elements and perforated plates, as well as to
the problems of the mechanical properties of the material of

tubes operating under conditions of cyclic loading.



STABILITY OF CYLINDRICAL . SHELLS OF
GENERAL FORMS OF FIXATION

By

V.V. Kashelkin and S.A. Shesterikov

This work is devoted to the investigation of the large
displacements of the points of a double-layer cylindrical shell
subjected to an external hydrostatic load 9 « The shell
of a length 2¢ is formed of two layers each of which having
a thickness of h and separated by a distance of 2% .

Let us assume that the properties of the shell material,
subjected to spatial loading, can be described by the following
relations [ 1] ¢

i .26 a8 (26 - 262 : (1)
=26, (26,-6,), €28, (26,-6,),6,26,-6,6,46, ,

where ée,é!, 6y and 6; are the main deformation rates and the
stresses in the circumferential direction and along the genera-
ting line.

Assuming an arbitrary fixation of the end cross-sections
of the shell, it will be possible to consider that the destruc-
tion process takes place such that there are three planes of
" symmetry: X0Y, X0 and YOZ. The shell cross-sections in the
planes of symmetry are shown in Fig. (1) . Let us consider
that in the CC'AA zone the shell swells, and in the CC'BB
zone it contracts. Since the main attention is directed to
the study of the destruction process, i.e. the study of large
displacements, then it will be possible to consider that the
shell behaves asa membrane in the X0Z and Y0Z planes.
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Fig, 1

The effect of the end of the shell lengths is revealed by the
appearance of tensile forces, It is assumed that the axial forces
arising due to the tension of the generating lines on the CO'B'B section
of the shell have resultant forces that are distributed along the BC arc
with a densityeft,(8) = const, and are directed along the 0Y axis, Also,
it is assumed that the resultant forces of the axial forces acting on the
CC'A'A section of the shell are distributed along the CA arc with a density
of t+ (8) = const and are directed opposite to the OX axis,

Let us novw investigate the process of destruotion of the mean oross-
section of the shell, which satisfies the equations of equilibrium in the
points B,C and A, The mean oross-section is destroyed according to the
scheme given in Fig,(1) [2] o For the first stage of destruction, the
geomeiric relations are expressed by the following equations 3

KXot R, siny |y =R_cosy

ax R, + (Rg-Ry)sinyg

8=R‘-(R’-Ra)cas«f

T

L- —

ZR“

Re -Rg

where L is the length of the BA aro,
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The equilibrium equations of the BC and CA sections for a mean
section of a shell of unit width will have the following form s

' 2
Ma—T’(I—s'inw)Ka-M‘{izF—g(Xo*y:—az) . (2)

9
Mg+ T, (l-cos¢)&'8+Mc(t,)=7 (x:+y:-62) .

where T, and T, are the resultant forces t (S) and t_(8), and ¥ (t,)
and M (t ) are the moments of the forces ) (8) and % (S) with rngEOt
to pognt c,
The moments M, p for the double-layer shell can be easily ocaloulated,
The remaining notations are shown in Fig,(2).
Let us assume that the generating lines BB' and AA' are desoribed
by the following relations 1

y(2): w[go-ﬁ{t)cos -;—r;-]f(]- “')[80'

'1ﬁ{t)(fff05 ll;,i)] ,

X(2)=¢[a, m’(t)cos ¢(1- ‘/’)[“ ¢ (3)
;-of(t){loras )]

where 0K ¢ £ 1,
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At ¢ = O we have the case of rigid fixation of the end cross=-sections,
whereas at ¢ = 1 we will have the case of hinge supporting of end cross-sections,
for other values y will correspond to the cases of elastic fixation of the
end cross-sections.

The running length of these generating lines will be given by:

, |
(e Jresl Nown ZE v 0)sn 2] o

, .
fz{t)=j/;dz(£ )z[t/fsinZL;Jﬂ—w)sin-Z;]z dz

This deformation leads to the rise of tensile stresses 6, in each point

of the generating lines BB' and AA', Since in the X0Z and Y0Z planes

the shell behaves as a membrane, then &; will describe the average

stress aocross the shell thickness and will be directed along the tangent

to the generating lines BB' and AA', Let us assume that s; 1s constant
along the shell length, Cutting a strip of a unit width along the genera-
ting line BB'(AA'), let us oonsider a section on this strips the coordinates
of its end projections on the 0% axis will be Z and #+§, Projecting the
initial foroces, acting along the sirip, on the 0X and OY axes, we get :

there are further on the subscript "1™ refers to BB' and the subsoript
"on to ul'. ’ o

Naturally, t, and tz depend on the coordinate Z, Since we are
basically concerned with the destruction process in the middle of the
shell, then the value of the second derivative at 2 =« 0 will be satisfactory,
However, if a certain mean value t;({ = 1,2) is introduced along the whole
length of the shell, then the following expression could be used to represent
the forces

o, oy _ ¥ 0 N
hpdi (i 9)S, = e (2-v)e,

For the rates of deformation in the circumferential direction and along
the 02 axis, the following expression is obtained :

—— -

(4)
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where ' is the rate of variation of the curvature,
Taking equations (4) into consideration the following expression
is obtained from (1) for 6,

£: oz(ég-lza'ea)
- z - . N .
6 26:’(%‘?*9)

Teking into consideration that the shell is double-layered, then
the moments M, and MB could be calculated 3

T I
!

-6€0t &, 6, hE?

M =
© L2 (€] 82, )[2E7 ¢ (€0 + 82,)]

(5)
6E Z 8 hE?

M, = — : : :
8 [2e) v (£)-8a,)][263 +(€] +32)]

Let us derive the parameters T

l,'r M (tl) and Mo(tz) for the first stage
of the destruction process

2’7

- 4« ¥
Tl-tlsf‘tIKB‘P ! ngtzsz:tlkz(i ﬁp)

Here S1 is the length of the BC arc, and 82 is the length of the CA aroc,
-y

b 4
L4 z
Molt)=Jam (e,) |, M (t,)-] am(2,)

where

and h1 and h2 are the arms of the corresponding initial force,

M (t,)= t'k’;(svsdmp scos - 1)

I3 .
w1 82 E Yooy sing- 1]



After iransformations, the equations of equilibrium can be writien
in the following form 1

6E% w63 h3?
[Zé:Z + (é:- LE )][252‘4(6:: N EN )]

60’ '
7.9, RaRyt, -

(7] 9
-7,8, Raz ?, = T(az' xoz - y’z) '

‘o . or
66, &4 6, 13’ o2

0 (608 a V26 % o (€7 *7:6, RaRg 8, -
(280 (6 sz, gy aiep] R (©)

oy 2 9
-1’62 R‘ ¢1 :-—2—-

(8°-x}-y!)

where
forhAF (2-9)
PRV LT A CET R
g, = e(1-sing) o
€« (3 - )(t-cos ),

¢'-¢(G£ﬁkf§t0$(f'/ .

7 .
¢z-(7 -¢)eosp +sing -1
Let us introduce some additional notations 1

¢3=s£n,q’- WYeos P o,

¥ .
‘Pq’-('z- -y )sing-cos ¢ ,
¥, = costy - cosy

!

. <2
‘Uzz sitny - sen ¥
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The functions B(t) and « (t) are expressed through B(t) and a (t) as
follows 1

plt)=8,-6(¢t),
«(t)= a(t)—ao

Taking into consideration the geometrio relations and introducing the
given denotions, we get for‘ﬁ and « the following expressions

7

PR @ ¢Fk &,

°(=K8¢3-Ra¢z

Utilizing the expréssion for the running length of the generating line
BB' (AA'), the values of the rates of deformation é; are derived 1

i (T2
e pp (i)

. 02 2

ez = oot 2[)
Concerning the rate of deformation of the mean surface in the circum-
ferential direction, we take the value of the rate of deformation of the
mean surface of a ring of a radius R, = #(R, + Rg ), subjected to an
external hydrostatic load of q3 the thickness of the ring being equal to
2h, Assuming that € = Be” for the ring, where G = g "“/2h, and that

A = B(R, /n)" , wo got
ieal) -4,

Acoording to the assumptions made for the geometry of the shell cross-

gection /
} . P .
xﬁg(Eg) * -(? )

Let us introduce the dimensionless parameters 3

B - o
3 x=7T

- R -
'RB 'Z_ /6

Tt

Oel
fn
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and express the time in the following dimentionless form
2
7= /0 t

Further, differentiate with respect to 7 and omit the dash of the dimen-
gsionless parameters,

After transformations, the system of equations (6) takes the
following form 1

.2 . . -2 . .
a,R‘ +azRaR‘+ a,/«’a +aﬁke+aska=l.' y

(1

2
a

.3 o, . . .
8'R8 #5:Rak‘¢6'3R +8¢R‘* 55/?a = L

3

The coefficients of the system of differential equations (7) have the
following values 1

a, - 4«3[22; )II‘P: N,

o, 6x(% )26202/73‘«#3 )-8 X) b0 0
a, = 6a(£)2‘6:2h32¢2 R;z +[//a’{2-7£)“¢2" -3’/%:]”’ ,|
aq:l/a(;;)z PN,

¥ .2
Usz—l/d(z"e) ‘7»’2 N’

?

7 2 or - 7 \¢ j
5’.:-6/_!(2—5;) 6, bézf/” R;*[@s‘z{z‘?) ¢'z—3zkgll]~z

14

T \2 _ o1 ;g2 -2 2,74
8,685 )6, 48°F R+ 8P (5 ) € P N,



Nayég® - 0z F
1" 1% r’K"ks ]'26! ¢2Ra-Pvzka(Rc-Ra)o

N = 602 - oy 2
"2 %2 K. R koo 6, ¢rka'P”1Re(ke'Ra) -

!
i
H
I
i
|
i

The system of equations (7) can be solved on a digital computer
by the aid of standard programs,
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METHOD OF CALCULATION ON THE DESTRUCTION OF
CYLINDRICAL SHELLS UNDER THE CONDITIONS OF
CREEP

By
A, M, Lokoshchenko and S,A, Shesterikov

The analysis of the behaviour of a cylindrical shell, subjected to
an external evenly distributed pressure under a high temperature, is
basically ooncerned with the determination of time, during which the shell
can withstand the applied load, The whole method of calculation of such
shells can be divided into four stages: analysis of the geometry of the
shell, elaboration of the creep curves of the material, determination of
the destruction time of the shell under stationary conditions, and evalua-
tion of the effect of temperature and pressure fluctuations during the
destruction time, ©Such a classification allows the sucoessive determination
of the nature of the made assumptions and the magnitude of errors resulting
in each stage,

Let us consider a long cylindrioal shell whose cross-section has a
small ovality, The service time of such a shell under the aotion of an
external evenly-distributed pressure ¢ depends on two geomeiric factors,
viz, the ratio of the thickness H to the mean radius R, and the coefficient
of initial ovallty 4., 3

Ry ey ) 8t (@, ma )M, )< T (1)

where 2a, and 2a,, are the maximum and minimum diameters of the shell
oross-section before the application of the pressure, The case, where the
shell has an excessively large length in comparison with the cross-sectlons
to the extent that the effect of end fixation can be neglected, will be
considered below, In this case, the destruction of an oval ring of a unit
width under the action of a hydrostatic pressure will be considered,

Under stationary conditions the hypothesis ofa steady creep with an
exponential function of p for the rate of creep in the stress G ]:1] is
the simplest hypothesis, which sufficiently describes the time characteris-
tice of the material in an integral form 3

p=8c" (2)



-1] -

where p is the creep deformationy the dot denotes differentiation with
respect to time, The coefficient B and the exponent n, which are derived
from the creep experiments, denote that the material depends only on the
temperature T,

In the investigation of the behaviour of oval rings most of the
authors (as for example [ 2] ) have considered that the deviation of the
mean line from the circle ls proportional to the cosine of the double
polar angle, In,[‘SJ y the pure moment stress condition of a non¢ircular
ring has been considered, The form of this ring at any given time is
approximated by the conjunction of two arcs of circles with radii and
R, The examination of this form of the ring (see Fig, 1) allows to
investigate the deformation of the ring close to the moment of destruction,

Let us consider the destructiion of suoch a ring in the case of a non-
linear creep [ 2} taking into consideration the deformation g, of the
mean line, Three geometric hypotheses will be adopteds 1) the form of
the mean line is approximated to the connected aros of two circles (see
Fig, 1); 2) the change of length of the mean line due to creep deformation
can be neglected

(72 -0)R, « R, = (T/2)R, (3)

and 3) the hypothesis of plane sections for the total deformations

E=E -xz (4)

( # is the variation of curvature and 2 is the coordinate along the
normal to the mean line), The geometry of the mean line is determined by
means of the following three parameterss y R_and ¢ |, For the deter-
mination of these parameters let us derive the equilibrium equations of
the elements ‘i‘ considering that the moment is equal to zero at the
conjunction point A (%, y4) : '

fal

‘Ir“;'[Br{f”)‘éi]-’[(éo:'0'5"'“"iﬂ) -(éo."o’S“%i ”)7”]'

0.59(a)-x) -y} )llye Ny 2)87a ] {os(reepns, [, - (5)

F A&l . H . 2 . +2
-0,5HZ;) 4{50‘_40,5//20.)"]4(60‘_—11.5//;1:‘.)’4 - (€, 050z, )3' f .
¢ =1,2, pn=1,

These relations are obtained under the assumption that in the analysis
of the process of shell destruction it is possible to neglect the
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instantaneous deformations as compared with the creep deformations, The
subsoript ¢ indicates the point of the ring (Al or A2) to which the corres-
ponding value 1s related, The coordinates @,, a,, x, and Yy ocan be easily
expressed through the main geometrio parameters

a, =R +(R,-R )sing | a,*R -(R,-R )cos ¢ |
(6)

.:::.,=IZ2 sing g,z R, cosg

The system of equations (3) and (5), in addition to substitution in (6),
consists of five equations for the determination of R, Rz, ® , &H y and
€, « The general form of this nonlinear system can be solved only
numerically, However, in the case of a very small initial ovality of the
ring A , the destruction time of the ring can be simply evaluated in terms
of the other parameters, Let us introduce the property of ring bending

A(%)

a,+R, (1+8) , a,s ko(f—d)‘

If we linearize (5) by A and make the necessary transformations, it will be
possible to get for A the following differential equation :

A(t);ssn;”(ec/ﬂ)ma (7)
k)
hip /s,
2
Ol
R, -~
“‘%ﬂn,-——:ﬂl =
1

Fig, 1

It is clear that the desiruction process is terminated when the condition
A(t*) =1 is fulfilled, Substituting this equation in the solution of
equation (7), the following expression for the destruction time could be
obtained :

t¥=(58ng") (H/R, )" ta (’/Aaf) : (8)
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The parameter &, , characterizing the ovality of the ring as a result of
application of pressure, — is related in the case of elastic loading to

the parameter of ovality of the loaded shell A.. by the following relation-
ship 1

8,280, /1-9/3,) + §,=EH/(4RY ) (9)

Equation (7) is obtained from system (5) when the first orders of A are
only preserved, In the corresponding system of reference [4], the terms with
4 were preserved and an expression was obtained for the destruction time,
wvhich could lead, in certain cases, to inocorreot values (for example, at
n>8), Such a drawback is not noticed in equation(8), In addition to the
indicated work, some relationships were derived for the destruction time
by several authors in the soluticon of a similar problem by other methods,
Let us ocompare the results of calculation using these relationships for
the case of n = 3,

Introduce the dimensionless parameter of the destruction time

n n¢l
T 84" (R, /H) t " (10)
Therefore, equation (8) can be wrltten in the following form 3
t*c0,067¢n (1/a,) . (11)

*
According to Hoff and others ['5 J, the expression of T s taking into
consideration the equation of iransition from the model shell to the real
case, will have the following form 1

T %= 0,035¢n[1+0,315H/(R, 8,)"] (12)
Yu, M, Volohkov and Tu, V, Nemiroviskii [ 6 ] have obtained the following
expression for T* H
% 0,075 H/(R, a,)? . (13)
The times Z'k, caloulated acoording to equations (11)-(13), are given in

tatle 1 at H/R, = 0,01, and in Table 2 at H/R, = 0,1,

Let us now represent equation (8) in a more general form, From Fig.(2) it
follows that the following condition should be fulfilled, i.e, for the given

o ? (14)
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pressure ¢ it is possible to introduce the average compression characterized
by the stress s, , Using the replacement (14) we get from (8)

BS™ t ™. (0,2/a)H/R, ) Un(1/8,) . (15)

The left part of (15) can be represented by the aid of (2) in the following
form

where Fﬂ is the creep deformation in the case of pure tension, accumulated
under the action of the mean stress ¢, for the destruction time of the
shell, Finally, a relationship in the following form is obtained 1

P'=(0.'z/n)(f//ko)'[n (1/a,) . (16)

Equation (16) expresses the following condition: the process of ring
destruction is determined in the case of creep when for the given shell
parameters (H, R, and A, ) a creep deformation (given by equation(i6)) is.
acoumulated, '

Table 1
M =001
A
° 1072 1072 10!
(1) 0.460 0.310 0.154
(12) 0.122 0.010 | 0.0001
(13) 1.75 0.0175 | ©.0002 ke, HG,
Fig. 2
Table 2
H/r,= 0.1
Bo| 1072 1072 107"
(11) 0.460 0.310 0.154
(12) 0.282 0.122 0.010
(13) 175 175 | _0.017
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In the appliocation of equation (16) the calculation of the shell in
the stationary conditions is conducted as follows, The geomeiric parameters
of the shell (H, R, and A,,) are first determined, A series of tests on
oreep are then conducted for the determination of the value of n, From the
series of creep curves,the curve corresponding to the mean stress 5, is
chosen according to (14), On the seleoted curve the value of p¥ , obtained
from (16), is marked and the time t* is subsequently determined,

The desoribed metbhod has the merit that only the creep parameter
(the index n) should be ocaloulated, whereas the original creep ourves are
used instead of the coeffiocient B,

The investigation of the shell destruction can be extended to the
nonstationary oonditions (unsteady creep, as well as variable stress and
temperature), Since the available experimental data on oreep under non-
stationary conditions are very limited, it could be assumed, as a first
approximation, that expression (16) remaine valid under these conditions,
The only property of material (the value of n), included in (16), oan be
considered as independent of the temperature T, Therefore, the problem is
reduced to the determination of pX from the given conditions of T(t) and
6 (t) (the stress is related to pressure through (9)), The following
method is more valids: stationary tests on oresp are conducted under the
given laws of variation of T(t) and 6 (t), and the destruction time t" is
determined graphically from the obtained curve p(t) according to the value
of p calculated from (16), If the ourves of creep, for the given range
of stresses and temperatures, admlt an analytical interpretation in the
form .

P/ (p)f, [7')60”
(17)
then, by integration of (17), for the given laws of variation of T(t) and
6’(t), a8 relationship for p(t) could be obtained from whioch the destiruction
time is determined using again (16),
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EXPERIMENTAL INVESTIGATION OF THE DESTRUCTION
PROCESS OF CYLINDRICAL SHELLS AND UNDER THE
CONDITIONS OF CREEP -

By
S.A, Shesterikov, V,V, Kashelkin, E,A, Myakotin
and V,I, Nikolaev

Very few experimential works have been published on the process of
creep buckling of metallic shells, This is related to the tremendous
difficulties encountered with on setting up the experiments, and the
long duration of the tests,

One of the first works devoted to this subject is that of Hoff [Il] .
This work includes experimental data on tests of 43 aluminium oylindrical
shells, The shells were tested on bending under a steady moment at 260°,
After a short period of creep, when the rate of creep was slowed 'down, the
end section of the oylinder was continuously turned with a constant speed
during a long period of time before the buckling of the oylinder, It was
found that buckling took place in the zone of maximum pressure at one end
of the oylinder or in its middle, The comparison of the experimental data
with the theoretical values [:1,2 ] gave satisfactory results,

The basic section of the work of Gerard and Gilbert [ 3] was devoted
to the experimental investigation of oreep buckling of thick-walled aluminium
oylinders subjected to compressive and torsional loads, Two series of testis
(eaoh using 18 specimens) were conducted on oompression and torsion at a
temperature of 3409, In conclusion, it was stated that the method of
oritical deformation [4.] was somewhat suoccessful in predicting the oritiecal
time of cylinders under compression and torsion, The conception of Gerard
was subject to criticism by Hoff [ 5] , who noted that the experiments [3]
conducted on thick and short cylinders are not satisfactory,

In [6 ], the results of the experiment carried out on long cylindrical
tubes are given, The displacement of the extreme points of the smallest
diameters of these tubes was measured, Loading was held when the rate of
displacement began to increase intensively, This time was considered
oritiocal and was compared with the theoretical values, The authors consi-
dered that the comparison of the theoretical values with the experimental
results is not reliable, due to the impossibility of measuring accurately
the initial defeots, the large scatter of the data on creep, ... etc,

The work of N,M.Matchenko [7 J represents the experimental data
obtajined on the stability of oylindrical shells, compressed from both ends
under creep conditions, Two series of tests were conducted on lead speci-
mens at room temperature, In the case of loass of shell stability, solid
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annular swellings appeared and the effect of bangs was not observed, The
critical time was taken as the moment at which buckling appeared, which was
determined according to the change of the character of axial deformation,
The obtained time was high in comparison with that given by equations,

These equations lead to the replacement of the secant and tangential modules
for the caloulation of the oritical load [ 8 ] by new time dependant genera-
lized modules, :

In the work of A,S, Wol'mir and N,G, Zykin [9] experimental data are given
on the stability of compressed rectangular (in a plane) cylindrical panels
of duraluminium under the conditions of creep, The tesis were conducted
on ten panels at a temperature of 250°, The properties of the material
were described in accordance with the ageing theory, The bending-time
ourves were plotted for panels with different values of initial bending
and at different compressive stresses, For shells with a given value of
initial camber, the oritical time fell abruptly with the increase of the
compressive stress, For loads constituting 90-95% of the critical elastioc
load, the critical time amounted in several cases to few seconds, The
experimental data are in good agreement with the calculated values as far
as the criterion of initial inconsistencies is obeyed,

The paper of A,P, Kuznetsov and N,M, Yungerman [ 10] represents the
results of the experimental investigations carried out on the stability of
duraluminium thin-walled cylindrical shells under the conditions of creep
on compression and pure bending. The specimens were tested at a temperature
of 255° before the moment of their actual destruotion, which instantaneously
ocourred "as a bang", The following parameters were measured: the rotation
of the end face cross seoction, the displacement of this section in the plane
of action of the moment and the shell destiruction in the mean section, and
the longitudinal compressive deformation, The ocompression tests were
conducted on 38 shells, and the bending tests were performed on 34 shells,
In the compression tests the loss of stability took place with the forma-
tion of 6-9 half-waves along the circumference and 2-3 raws of half-waves
along the length, The shells, which have lost stability, had the same
shape as those after the instantaneous loss of stability, In the bending
tests the waves were formed in the compression zone, The form and dimen-
sions of these waves were close to the waves formed in axial compression,
The creep characteristics of the material were determined by specimens
made of tubes, The loss of the shell stability in the case of creep took
place under loads above or below the lower critical load, The large
scatter of the results is due to the fact that all the shells have
different initial defects and the creep characteristics, themselves, have
a considerable scatter, The general deformation, at which loss of stability
takes place in the case of oreep, is less than the elastic deformation
corresponding to the upper oritical siress, However, this general
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deformation is higher than the elasiic deformation corresponding to the
lower critical stress, The scatter of the experimental data increases
with the decrease of stresses, i,e, with the increase of the creep defor-
mation, The same conclusion about the values of the critical shell
deformations in the case of compression under creep conditions was theore-
tically obtained in [11] on the basis of the nonlinear equations of the
shell, where the ageing hypothesis was assumed for the creep of the material,
On the basis of the experimental results, it was concluded that the value
of the critical time of loss of stability of shells under creep oconditions,
obtained according to the value of the elastic deformation corresponding
10 the lower oritical compressive stiress of shells with high significant
initial defects, renders a guaranieed lower limit for the oritical times
of compression and bending,

In the works of Samuelson [12,13], the results of the experimental
investigation of the buckling process of shells subjected to a sieady axial
load and to bending are given, He used shells made of aluminium alloy,
and the test temperature was 225°, In the experiments, it was observed
that the form of the shell is asymmetric, On all the curves of axial
deformation vs, time it was noted that there is & section of accelerated
creep before the loass of stability, The results were processed according
to the ageing theory,

An investigation similar to that of the stability of aluminium
cylinders, subjected to axial compression, was conducted in [:14] .

The large volume of published theoretical works devoted to different
aspects of analysis of the processes of destructidn and loss of stability
of thin-walled elements under creep, i,e, evidently insufficiently confirmed
by experimental investigations, These investigations would have, at least,
qualitatively confirmed the hypotheses postulated in the investigation,
This gap slignificantly influences the choice of further trends in the
investigations, since few of the simple schemes used in engineering methods
of caloulation require experimental confirmation, For the study of these
problems it was decided to conduct a series of experiments on ocylindrical
shells, subjected to an evenly—distributed external pressure, The results
of tests have allowed to derive the relationships, suggested for the
description of the destruction process of the shells,

On the basis of the analysis of the destruction process of the shells,
a simple relationship of the following form was previously obtained:

n+2 2 n 7
(5) g (1)

] ) h
e (w) (5 g
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where % is the time of the destruction process, in hoursy
2n is the thickness of the shell wall, in mmj
R, - 1s the average radius of the shell, in mm;
A4o is a dimensionless parameter characterizing the initial
defect of the shellj
g is the pressure, in kg/mm"y
n and A are the characteristic parameters of creep,
The parameters n and A are determined on the basis of the experimental
oreep curvbs for the corresponding test temperature, It is assumed that
the rate of creep & is related to the applied stress 6 according to the
following relationship:
é:?\Sn (2)

In the high temperature testing laboratory of the Institute of
Mechaniocs of Moscow State University, the creep of tubular specimens made
of steel 8N10T was tested on IMEKE-5 stands under stresses of 1,2,3,4,5,6
and 8 kg/mm~ at a temperature of 8509,

The description of the test rig, the procedure of testing the creep
of tubular specimens, as well as the obtained creep curves are represented
in the NII reports No, 1006 and 1120 of the Institute of Mechanics of Moscow
State University.

ds a Tesult of treatiment of the creep curves, the values of the creep
parameters were obtalned from the condition of the minimum values of the
mean deviations for the indicated stresses and temperature :

-3.28

| -5
n=3.28 , A=8.32.10 (Z& 7

By substantiation of the method of caloulation of shells in the case of
oreep stability, and checking the previously obtained relationships, a
series of tests were carried out on two rigs allowing the examination of
ocylindrical shells under external pressures and at temperatures of up to
1000°,

The obtained results indicate that the destruction times, measured
in the experiments and determined from equation (1), have the same order of
magnitude, assuming that ithe initial inacocuracy is of the order of 0,01-0,001,
The conducted measurementis of the shells before testing have shown that the
initial inaccuracy amounts to «~ 0,002, The results of the tests and the
caloulated data are demonstirated in Table 1,



Table 1
- @ | ® | ® [desac-_|Bpews @] Bpenn 5 ua- ]
Ne Ne | [Ouamertp | Tonmuna | 1 emne—| une yacax 3k- cax TeoOpeTi-—
n/n obpasuna | cTeHkH | patypa P CnepHMet- vyeckoe npu(d
kr/cm? TanL>Ho t = 0,0l
I 60 1 850 1,0 84 180 !
2 45 2,5 850 11,0 135 55
3 45 1,5 850 9,0 3.5 5,6
4 45 0,5 850 1,0 29 21,5
5 45 0,5 830 1,3 11,3 9,1
6 45 0,5 850 1,4 8 7
7 45 0,5 850 1,8 4 3,12
8 36 0,5 850 1,0 112 85
9 36 0,5 850 1,2 51 46,5
10 36 0,5 850 1,4 23 27,8
| 1 22 0,5 850 5 8 5,1

Keys 1- No. of specimens; 2= Specimen diqpeter; 3~ Wall thickness;
L~ Temperature; 5- Pressure p, kg/cm; é- Experimental time , in hours;
7- Theoretical time, in hours .
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DETERMINATION OF THE DESTRUCTION TIME OF A CYLINIRICAL
SHELL UNDER UNSTEADY CONDITIONS

By
A.M, Lokoshohenko

The process of destruotion of a ring under creep conditions, subjected
to an external evenly-distributed pressure of 9, will be approximately
oconsidered, It is assumed that the form of the ring of thickness 2h and
of unit width is insignificantly different from the cirocular shape, In
deriving the solution, the deformation of the mean line 1s taken into
consideration, It is also assumed, as in [1] , that during the whole
process the ring has two axes of symmetry, and that the maximum and minimum
diameters (2cy and 2@2) of the ring are the basio parameters, The destruc-
tion is defined as the condition when the minimum diameter of the ring
tends to zero,

Apart from the generally adopted hypothesis of plane sections, we
consider, as in [1], that at any moment of time the ring can be approxi-
mated by the oonqugtion of two oircles with radii Rl and 32 (in Fig, 1,
the first quarter is only shown),

Let us investigate the unsteady behaviour of the ring, where the
properties of its material can be described by the relationship between
the stress 6 , oreep deformation p and the rate of deformation P in the
form of the theory of strength;

p = B P—d G'n ’ (1)
Ay
{ A (x40
o | L
I ow
- -~—m———a4A‘
Fig. 1

where B, o« and n are constants for the given material, For simplicity,
n is represented in the form of the ratio of two integer odd numbers,
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whereas o¢ is given in the form of the ratio of an evemn number to an
odd one, The parameter Z will be defined as the distance between an
arbitrary point of the ring and the mean line dividing the width to 1iwo
equal halves, Therefore, on the basis of (1) and the hypothesis of plane
sections we will have 3

§«(50Y8) (¢ -dha)e,-2he /8] ra-1 (2)

where E, and X are the deformation and the variation of the curvature

of the mean liney the dot denotes that differentiation is carried out with
respect to time t, If equation (2) is used and the equilibrium equation is
written in a general form, a system of nonlinear differential equations is
obtained, which can only be used for numerical calculation, Therefore, an
approximate method for the solution of the problem will be only given, For
simplicity, it is assumed that the deformation of the mean line and curvature
in each point vary with time according to the same relationship, i,e, it is
assumed that a time funotion S(t) is operating (varying from one point to
another), whioch makes it possible to determine the deformation and ocurvature
in eaoch point of the mean line from their rates 3

€, =£S() 4, % =3x8t ,
In both relationships, the function S(t) is the same,
The behaviour of the ring is investigated as in the analysis of
buckling of a visooPIastzc rod l:2] (g will be taken as the ratio
€ [(hx). From (2) we then get ¢

6875 T(na) (y-2) kel 1)

Now the reéultant force and bending moment in an arbitrary oross section
are calculated 3

1
Grhj dz Brsdr (arv)h —l¢
1

]
1 . | ‘) ] )
M:hzjézdl—B Te Ty (“)/:(Z’K'(m‘l) '(y«p—x,u)

In the last expression the functions ¢ and ¢ were introduced for the
sake of accuracy, These functions are determined as follows 3

pelyen) (g welgr) e ly-1)" )
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The equation of equilibrium of a ring of unit width will be satisfied in
points and A_ (see Fig, 1), (it should be also taken into consideration
that the bending moment in the point of oconnection of the two circles A_ is
equal to zero), Let the coordinates of point A, be denoted by X,y J, .

The equations of equilibrium in points ‘1 and A2 will have the following
form 1

(x-1)
i i

9ai=B'rhK3:rxd
(Kdl)s ?(’ « tx-1) . (4)
K(xe1)BT (k¥ -9; ¢:) -

h

: 2 2
0,59 (a, -x, -4, )=

Here and hereafter, the subscript ¢ and the acquired values 1 and 2,
indicate that the corresponding function is taken in point or A_, The

system of equations (4) ocan be reduced to the following form i 2
14
2 (”Kgr )_ (el ) %, (5)
h'g"f ’ 2ha; R .

Let us investigate in details the right hand side of the second equation
in (5). Referring to (3), it is possible to show that at y,>>1 this part

of the equatlon can be approximated to the following form wlth an accuraoy
of up to y

2
k¥ _ =~ lﬂ;lil_
7Y 37 (6)
Even at Y = 1 the divergence is extiremely inaignificant 3 (x -l)/3 as
compared to the accurate value (K-l); moreover, K varies in the range of
1 to 2 (see [ 3] ). Consequently, the relationship (6) can be practically
applied up to y; = 1, On the other hand, at Y; <K 1l, we have 1

(ko [ ) -y = 1] (7)

Expressions (6) and (7) are very simple, and the functions ¢, and.(P
can be expressed through them, Substituting in (5), we get a system of two
nonlinear differential equations solved with respect to their derivatives,
In this case the system has a very simple form and can be integrated by
means of a digital computer using standard programs.

Let us now find an approximate value for the destruction time of
the ring (tx) in the case of a small initial ovality, From [1] it
follows that such a ring maintains a small ovality during a time of _~ 0,914,
The small ovality of the ring corresponds to the case %:;> 1, Then, from
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(5) and (6) we have 1
‘/y‘. g 3(af— x; -_9,2)/(2(K—4)ha5)

For the function 2 the following approximation is obtained s
¢ 2 (K-1) 2 Z(K' ,)ha". ] K-1
- 2Ky, % 2K :
) Yi 3(al- xoz,;,y_cz ) (8)

Substituting (8) in (5) we finally get i

f

—

x'=(_7_ )'= 3(0:__1::-”’2)( QBra‘- )x-’ (9)
i 2(/1\'—])}1(1‘: Zhlszxr

From Fig, 1 it is olear that s
a,: Rv‘(kl-kt )sin/d y 9, =k2—/RZ—R’ )casﬁ , Io‘kz sn g, y;-l?'cos_ﬂ_ (10)

Let us take the condition £ = —4ﬂ;‘. Introducing the mean radius R, we
get 1 '
-]

944‘/1)222R ,x,:f?e//z_ 9 %:R'/E (11)

Let us now introduce the ovality parameter A as follows 3

a4=R,(4+A) ’ azzl‘a(/—A) (12)

The ovality parameter L, of the elastic ring is related to the parameter
Ace 0f the unloaded ring by the following relationship

b,=0,3, [(9,-9) s 4= 260 R (13)

where ¢, is the oritical pressure eccording to Eiler [4] and E is
young modulus,
From (10) - (12) we will get 3

Ry=R (1-28,) ,R2=/?.:(4+A4>9 A(=<f+”_2.)A (14)
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The relationship (9) acquires the following form 1

, N . a
3R, 8 [¢8§,ﬁ+a)(“0 L 3Re8 ¢8Q,ﬁ-o) (x-7)

x'-(x- 1) h(1+8) {

thsff ’ z(x Da(r- b) ths:f

From this equation it is possible to get the approximate value of variation
of A with respeot to time 1

v ool
3R, a8 (9373‘;)“" o ,
(e-1)h * 28" R, '
. 20042 a+f
s AOVEANNEDY
Aun’D ' ]7-({?-1)5( 2h (h) olef
By integratiion we get 1
-0 ’é
a(t) =Lay — «pt] (15)

As an estimate for the destruction time t, let us accept the
condition ei(t,) =1, Moreover, let us take into consideration the
condition A, > { and the relationship (15), Therefore, the final
equation relating the destruction time of the shell with the material
charaoteristics, the shell parameters and the magnitude of the approximate
pressure, will acgquire a very simple form ¢

—(xD&)" (26)

It is easy to note that in the case of an unsteady oreep (x = 0),formula
(16) coinocides in transition with the corresponding expression obtained

from (5).
Similarly ['5 ] it is possible to introduce a mean value for the

compressive stress arising in the ring due to the action of pressure 9
which can be expressed in the following simple relationship 1

-3

If the creep curve for this stress 6 is derived, we will have a relation-
ship of the following form :
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Considering & as constant, it will be easy to get the following relation-
ship 3

({R n _ P‘Z-rl
3('2—,1—) = TaiDz (17)

Combining (15) and (17) for any &« + 0 we get

- - A (/Z - e 3, \*+1 R, e+1)  (x41)
a7 = 4" - Coe 1) ( a+1 ( 77> P

Resorting to the same method followed in the derivation of equation(16), we
will have a deformation p* corresponding to the moment of destruction 1

e o [larnGam 0 s
S =) (F) (%) a8)

- o

By the aid of (18) it will be possible to determine the destruction time
tx on the creep curve, by the value corresponding to the pressure & or
the time during which the deformstion p* is acoumulated, In equation (48)
the parameters n and o of the material are included, whereas the original
oreep ourves are utilized instead of the coefficient B,
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STABILITY OF ARCH IN THE CASE OF CREEP

By
V.V, Kashelkin

Let us consider the problem of stability of a sloping arch, subjected
to an evenly distributed pressureq, In similar constructions, a loss of
stability in the form of a "clap" is observed, This loss of stability
can be discovered only on the oconsideration of the geometric nonlinearity.,
The arch is deformed in the case of oreep, and the properties of its
material oan be described according to the theory of workbardening {:1]
by the following relationship 1

A ()

where p 1is the creep deformation

6" 1s the streas

n is the creep index

@ is the workhardening index,

Fig.(1)shows an arch of a length { and height C,, and which is hinge
supported from both ends, It is assumed that the arch axis represents an
arc of a sinusoid

k/o =C°sin—ﬂ7’1

The arch has a rectangular cross section of a height 2h and width b,

For the solution of this problem let us adopt the combined variational
principle, postulated in the work of Sanders, McCombd and Schlechte [;2].
This principle is based on the simul taneous variation of the field of oreep
rate and the field of stress rate, as shown in Pian's work _[3] .

For nonlinear problems, the function is expressed as follows 3

N . 1,04 2 )2
= C.. "6.. N <75 [.. ZP. 6 dV'
¥ ![év[v” i “ei Lag 2(‘/ 1% (2)
S A TP I I AN
I A ¢ Iy
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where 6:. 1s the stress tensor;

e;; 1s the tensor of total deformation;
el is the tensor of instantaneous deformation;
R;  1s the tensor of creep deformation;

u; is the displacement;y
Eh' is the section of the surface in which the deformations u
are glveng

fr is the section of the surface in which the forces T are given,
The dots denote differentiation with respect to time,
In this case it 18 necessary to get an exact expression for the
component of deformation, namely 1

et‘j— (u J,b +u’k,2 U-k,})

Denoting by y the distance from some point to the arch axis, we have
according to the law of plane oross sections 1

2 2
€ = Uy + g— (Wx - Wo,x.)“‘f/(wxx "wo, Xx)
Now the function (2) can be reduced to the following form 3

K= 8’.!][6(“'! X vr _‘/W,”)‘ ,1-
o 62'6‘9‘“5"]44 (3)
v ydx
Here, it is assumed that the instantaneous deformation is elastio, Aoccor-
ding to [‘3] , it is also assumed that the arch axis preserves its sinu-
soidal form, and that the moment is distiributed along the arch acocording

to the sinusoidal law, Therefore 1

W:L‘sin—jf—’(:'zc.,s""ﬂ 3

/4 4

(4)
U=20 )
¥ Fx
G =6 (6°+6 —2—’;8Lﬂ—,—)
72hE
Here 6 = 3T is the critical Eulerian stress for a beam of length f;

", 6, and G; are dimensionless parameters,

Substituting (4) in (3) and varying K with respect to ?, G, and.Gl y
we get a system of three equations.

As a first approximation, let us assume that the creep deformation

is equal to s

p=(25) (2°-
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Introduce the dimensionless time parameter 7T as follows 1

-20C n-4
r = (_727C,) . £t (5)

Omitting the transformations, the final form of the system of equations
is obtained, in which differentiation is carried out with respect to the
dimensionless parameter of time:

5 )6»”—-5 +(2h)67= .
6(2h) sy -6, (21) Km0, (6)

)i -z 6, - (o™ 1) ", -"

(32
Here ko and kl have the following values 3
[—] n-2m m
-_[26 +m}‘:rWG e, ]
nel
4K :IZ] : "'(Zm—l) 2m-1
__mrf . ! ’
where -
2m-1
v _nfn-n). Ln-(2m-1)] 1:3:5.(2m- 1) (5 )
" (2m)! 246 2m  2met

nYn-l)...[n-/Zm-Z)] f-3~5---{2m-7) (_21)2111-1
m (2m-1)! 246" 2m . 2m+ !

The initial conditions of equations (6) can be written as follows [l]

'Z<O)=’2; , 60 =6, , 6(0)=6u .

The parameters ’2 G,; and 6;; represent the values of the corresponding
parameters obtained. immediately after the application of the load, If we
consider that the instantaneous deformation is elastic it will be convenient
to utilize the variational principle of Reissner, assuming the same distri-
bution of stresses and displacements as in the case of creep,

In this case, Reisser's function acquires the following form :

!
K= sf ]!{6[3’ (W, W, )-g(w{“-w,,")]-f»;}dydx v [gwelx
-h o : o
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Calculating this function and varying it with respect to 7; , 6,, and 6, ,
we got the following system [ 1]

2
s =12 (55)(0,-1) 5 6, 3G55) (22 -1) 5

L

. /.G 4. L 2881 0
50‘(—2,,)75",—26'4”‘51 37 3

>

where 7 is the moment of enertia of the arch cross section, Excluding
6,; and 6, , we get the following algabraic equation for Zé s

3(2) (0, ) (0,71) &0

where

g#

s

& =

(1)

|

1 !
2rs ¢,

'“
<

From (7) it follows that & as a function of Qi attains its extreme value
at ' '

To \2
i Zh) - - (8)
H cer  C . *

‘ 3(z)

2
If (fiﬁ) < 34- y the deflection will proportionally increase with the loads,

2
if(-f—;))-;': when the critical value of the load parameter E“cr is attained

a clap is produced and the deflection will instantaneously vary according
to a definite value, The critical load ocan be derived from equation (7) if the
value of Qicr , given in (8), is substituted in it,

Calculations were conducted for the arch, for which

(}%):_g_ at n:=3 and ¢ = 0,1,2
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The results are shown in Fig,(2)where the strong dependence of the process
of arch deformation on the value of o¢ characteristic of workhardening is
olear,
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THE BEHAVIOUR OF A HIGHLY CORRUGATED ANNULAR PLATE
UNDER AXISYMMETRICAL LOADING

By
A,M, Lokoshchenko

Let us consider a highly corrugated annular plate (shell of revo-
lution) subjected to an axisymmetrically distributed pressure q and a
centrally located concentrated force P (see Fig, 1), A is the internal
radius of the plate, R its external radius, and h &R its thickness, The
external contour of the plate is fixed, whereas the central rigid circular
disc of the radius A can move along the axis of symmetry, Moreover, the
boundary conditions of the plate correspond to fixation along both contours,
The plate is made of an elastic material with Young modulus E and Poisson's
coefficient /¥,

The first investigations on corrugated plates were confined to
deflections of the order of the plate thickness, The longitudinal defor-
mations, as well as the square of the tilt angle ¢ , compared to unity,
were neglected, D, Tu, Panov ['lj considered finely corrugated plates by
the application of Lyav's theory of thin-walled shells and solved the
problem in series analysing the produced functions into powers of the
parameters of loading and corrugation, V,I, Feodos'ev [ 2,3] extended

Fig, 1
Meissner's equation to the case of defleotions of the order of thickness
and used Bubnov-Galerkin's method for the investigation of the stability
of inclined corrugated plates, L,E, Andreeva [j4] replaced the corrugated
prlate by a flat one and considered the influence of corrugation by intro-
ducing the coefficients of anisotropy in the radial and circumferential
directions, L,E, Andreeva [ 5 ] has investigated the behaviour of such a
plate by the aid of V,I, Feodos'v's equations [2]. E,L, Aksel'rad [6,7]
has derived the equations of noninclined. shells of revoluation in the case
of existence of largeQdeflections (see also [8]). However it is suiltable
to use them only at ¢ << i, In [9], the nonlinear problem has been
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reduced to a succession of linear problems by the analysis of Meisser's
functions into trigonometric series, P,I, Begun [10] has investigated
the behaviour of a corrugated plate using the linear approximation of
equation (6) and adopting Bubnov-Galerkin’s method .

Let us consider the deformation of a highly corrugated thin annular
pPlate whose defleotions may be of the same order of magnitude as its
height, The plate is deformed basically due to the bending of the
corrugation, Therefore, no limits are set to the tilt angles W, 1In

" the calocwlation it is assumed that the elongation of the meridian arc
compared to unity is insignificant,

Since this is an axisymmetriocal problem, then let us consider the
cross section of the plate (see Fig, 1), Using Lagrange variables, the
characteristics of the stress—deformation state in the plate will be
determined as functions of 7, , where T, is the distance between the
considered point in the undeformed condilion and the axis of symmetry,
The distances from the considered point on the plate after the application
of the load, to the 7, axis and the axis of symmetry will be denoted by
w(%) and (7)), respectively, The lower o signs indicate the values of
.the functions in the case of a zero load, whereas the upper ones indicate
the values of the functions on the middle surface,

Fig, (2)illustrates an element of the surface, cut by two meridian
sections as well as two sections simul taneously perpendicular to the non-
sectorial plane and the middle surface in the adjacent points, Let us
denote the radius of curvature of the meridian arc by R, the element of
the meridian arc directed to the external ocontour by ds the angle between

the tangent to d s and the axis of symmetry by (*), the variation in the angle in
the process of deformation (¥ =o,—x) and elongation deformations in the meridian and
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circumferential directions by €, and t,, and the corresponding variations
in the curvature by 2, and 2%,, The edges of the shell element are
subjected to normal forces of N, and N, per unit length, as well as to a
shear force of Q and bending moments of and M _,

Let us introduce the following dimensionless variables 1

a<AR [E ce /R E-2/R, R=R /R, w=w/e. Arh/R

_32
S LI WG ) o)
2Eh ! 2T LR A ' £h '
-2 - -3
ﬁ=( )Q ’ M:’z(")R
Eh En3

The dashes should be omitted everywhere,

Let us consider the conditions of equilibrium of the shell element,
Equating the sum of the forces projections in the direction tangential to
the meridial curve with zero, we get according to (1) (as, for example, in
[11]) the following :

d(N,z)ds — My sic — Qz Ry =0 (2)

The equation of the moments relative to the tangent to the cirole will
have the following form 1

~

d(M3)/ds — My sina +12Q%/3' =0 (3)

If the centiral axisymmetriocal seotion of the shell is cut, and all the
forces acting on it are projected on the axis of rotation, then we will
get 1

- k4
Nycosa + Qsing = (2/'3)/?'53’5 +pP/% (4)

Moreover, we will confine ourselves with the case ¢ = const, From geo-
metrical considerations it 1e clear that (see Fig, 2) 3

dw/ds s-cosa; difdsesinex ; dt, fds, = sineX, (5)

I0) 40) b dey (re]) | dO)

dz,-a’s ds, dz, sinol, ds
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Further on, the derivatives of all the functions in &, will be denoted by
a dash, Acocording to the definition of Rl we will have 1

I |
1 da C‘f’—"‘o)sinoc,

Ry - ds (14'8:) (6)

The oircumferential deformation 82 of any point on the plate will be
glven by

e, =(% + 2co:scaz)/('5° +?casa—°)-—f

Let us analyse this expression in a series according to the parameter /7
(see Fig, 2) of the distance from the considered point to the middle
surface, Noting the small thickness (A << 1) of the considered plate
we shall confine ourselves in this expansion with the linear part

82.—_ (z/za - /) + (('Z. CoSax — Zcosaa.,)/?::) 7A

Therefore, the deformation of the plate will be determined aocording to
the hypothesis of plane oross sections (see Fig, 2)

0 s ! !
= . S - - . T ey =
et,a st,a ' xt,g ? 62 2 r. & R

(7)

(v'vela,) ] (r,c08 -2coscX, )
H ( o) sind
1+ €,

Assuming an elastic relationship for the stresses 6, ; and deformations
84,2', we get

. 0,52 0,51
o ° - =
N1,2'I 6',2 dy= 5'.2 ‘ i&u ! M’.z ) J‘ -61.17d7 x'.z ) )ac“ ‘ (8)
~0,5) -45)

The system of equations (2) — (8) defines the stress-deformation state in

a thin-walled elastic shell, This system would be significantly simplified
if it is assumed that s;<§ 1, This assumptiion is quite justified, since
the large displacements in the oorrugated plate occur mainly due to bending
and not due to the elongation of the meridian arc, In this case, equations
(2) - (8) can be reduced to a system of five differential equations with
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respect to %, at a< L L 1 1

¥ '= Sl—:nd
s,

.
?

plo (M- ) v ° .
sinal, “°(N’-9€z ) '
(- 9)[”:'(’*V)£g.]si‘nq

! L4
N,:?(‘/Jl-da) zs‘nd
¢ °

' (9)

e (1-0){(14 )2y~ M, Jsinat- 12272 ¢

! ’

YSina,

’ co ’

w:—-*_..s.d_.

Sin o,

Here
z 15COSK - T oS vav?
d=d°'w’£2’:? -,‘aezz : 2 : 9=P.¢t -thjO(
* 7, 'or,sina ’

The relationship o (%) and o, (%) are determined according to the
initial form of corrugation, System (9) is solved under the following
boundary oconditions

rfa)=a , 2(1)=1 ¥(a)-¥(1)-0 w(1)=0 . (10)

After the solution of the differential equations (9) the variables N
and M_ are determined in terms of the obtained functions by the aid of
algabraic relation

CIN +71-3201€°
Nl QN'*(/—f )Ez ; M!.,)M,’.(,_),z)az '

System (9) allows, in the case of a very high corrugation, to. investigate
the defleotions of a plate, of the same order of magnitude as the dimensions
of the corrugation, This is clear from the fact that in comparing the
equations with their solutions no limitations are set on the parameter ¢ .,
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The boundary problem (9) - (10) can be solved by the successive
comparison and solution of the corresponding Coche problems, Taking the
value of the argument 7%, =ac as an initial value, we choose three pairs
for the initial values of the funotions N, (¢) and X, (a), under which the
Coche problem is solved, and get three pairs for the values 2 (1) and ¢ (1),
In the tbree dimensional space { ¥, (a), ¥,(a), t(‘l)} , & plane is drawn
through the three obtained points, Then the intersection of this plane
with the %(41) = 1 plane is found according to (10), Finally, the linear
relationship between N,(a) and M, (a) is determined, Similarly, by the
investigation of the thiree-dimensional space [N (a), M,(a), w (l)} we
get a second linear equation relating N,(a) with M (a)., Solving fhese
two linear algabrailoc equations simul taneously in three arbitrary pairs of
initial values we get the new combination of N,(a) and M, (a), By the
repetition of the shown process of determination of the initial values,
it will be possible to solve with a sufficient accuracy system (9) under
the boundary oconditions defined by (10),

The initial form of the ocorrugation is widely described by an
expression comprising the three free parameters C, m and n 3

w, (t,) = C cos"[g[?%—_—a) (% - _‘.':?*.!_)]m} (11)

Therefore, the functions « (Z)=0.57T+ arotg w, and a,(%), could be
deternined, These funotions are used in system (9) which was solved on
a digital computer,

The relationships between the functions N, (a) and M,(a) and the
value of the uniformly distributed pressure q are shown by ocontinuoua
lines in Figs.(j and 4)for the following values of the parameters 1

a=0.6 ; €= 0.12 m=6 3% n=8;
A= 0.01 ; V=0.5 3 P=0 .

In Fig, 5, curve 1 characterizes the relationship between the deflection
of the rigid centre 2*(a) and the pressure q,

-3

4197
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In the case of small loads F and ¢, the investigated functions are
expanded in series in terms of the small parameter sustaining only the
first term,

z=z°+(P-g)f, ; ‘Pu(/-"#g)(,o ;

N=(Prg)N, ; M =(Prg)i

<

we=w + (Pry)w

Equation (9) is then reduced to a linear system of differential equations

Sa'mupc.‘?oco; ¢ Ma cesecof, - Qﬁ/roz—m'o'{ﬂa-ép/;-o) ,— -
N'-a'N clg ox -(8' /2 Yeese ~f- - ) :
3 =¥ N clg o (8o f7 ) cosec o, - )”, [N))_’a/?,//?o ;

M;‘[[" - ,‘Z)Js/z:]rosecao—[h Q)MJ/IQ' -i2(8 - (12)

= Y/ -2
N, 2, coso(o)/(} z,senx_ ) .

vie-p: as SR AE j)(a)zfz/f)=o‘~ Fla):w(1)=0 , v(1):0 ) I'

where B denotes (¢ -pctgot‘), and &~ (P +?"3)/(P+9)

The dotted lines in Figs.(3-4) represent the solution of system (12), In
the "load deflection" plane this solution represents the straight line
tangential to the characteristics of the plate at the origin of coordinates,
In Fig,(5)the straight line 2 represents the plate under the action of an
evenly distributed pressure, whereas the straight line 3 represents a plate
subjected only to a concentrated load P acting in the centre (using (12)),
In Fig, (6)the profile of a deformed shell is shown for different '
values of an evenly distributed pressure 9§, The results of the numeriocal
caloulation (9)-(10) show that the shell meridian is mainly deformed due
to bending in the peripheries of its edges, The part of the meridian
adjacent to the external fixed contour suffers a particularly high bending,
The displacement of the highly extended middle part of the meridlan with
the increase of pressure ¢ consists basically in its rotation with respect
to the external end of the meridian,
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A

In conclusion it is observed that the system of equations (9)-(10)
allows to investigate the behaviour of plates with one or many corrugations
(they don't need to be equal),

It is possible to take into consideration corrugations of different
forms (including cirocular), enlarged boundary corrugation, angle of fixa-
tion of the external contour ,,, eto, The number of corrugations and
their parameters are taken into consideration in discussing the initial
formw, (%)
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TENSION OF AN ORTHOTROPIC NONLINEAR ELASTIC
PLATE WITH A CIRCULAR HOLE

By
M,A. Yumasheva

In the available literature, the problem of stress concentration
near a hole was solved either for an anisotropic but linearly elastio
medium, or for a physically nonlinear but isotiropioc bodf. The concen-
tration of stresses near the holes of orthotropic elastic plates was
disoussed in the books of G, I, Savin [1] and S,0, Lekhnitskii [2]. The
orthotropic strips with holes, subjected to tension and bending, were
investigated in few works [3,4]. The influence of the nonlinearity of
the relationship between stresses and deformations on stress concentration
near holes was also studied in (1] for isotropic materials, The plastic
distribution of stresses around holes of cirocular or other forms, was
considered in the book published by V,V, Sokolovskii [5].

Numerous researches (for example, [6,7]) were devoted to the approxi-
mate me thods used for the solution of the problem of determination of the
coefficient of stress concentiration in the plastic zone of an infinite
isotropic plate with a circular hole existing under temnsion,

It is highly significant to analyse the concentration of stiresses
and to determine their distribution around a circular hole of an ortho-
tropic plate existing under axial tension, whose material follows the
nonlinear relationships between stresses and deformations, taking into
oonsideration at the same time its anisotropic and physically nonlinear
properties,

Let us consider an infinite "orthotropio" plate with a ciroular
hole of a radius a existing under the conditions of an evenly distributed
axial tension p extending to infinity (see Fig, 1). Let us locate the
origin of the coordinates in the centre of the hole and take the major
anisotropy direotions of the mechanical properties (it is assumed that
the direction of the tensile force coincides with one of the major axes
of anisotropy) as the direction of the X and y axes,

e - e e e —— ———
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Assume that the relationship between the deformations &;, and
stresses G,;,, could be expressed in the following form [8]

€.°5. , 6 v’//)g

K ixlm tm ’

v lm ?m

(1)

8n n-1
V)5t L) 9% xS

where S;xy,1s the tensor of elastic constantsj g, 1is the tensor of material
cons tants taking into consideration the anisotropy of nonlinear properties;
b and n are constants describing the nonlinearity of the material,

For a plane stiress state of an orthotropic body, expressed in
functions of stresses, the equations of equilibrium will be automatically
satisfied, From the conditions of compatibility, a mnonlinear differential
equation is derived for the stress function ¥ (x,y)

4

ER 47 .3y
a" ay"_ *(2(1'2 Gss‘)a";a;‘z fﬂ:'z axh =R (W) ) (2)
a' 37
u Jx Ay 2 22 dx ¥ y:g :
y j
(3)
1 r
+ ‘- —_— — e +—-0 J-< - -
(912 2 Y )aya //9 s Jy’d.r, ’ 22 c?x’] ;
‘__( A7 3Ty atp, 7 ar Py 3’7
Jy? q"J 7!2 dxt/ Ix? 7'33 2 gzza ) ?
y y 'y x? 66.9ny J.zcc?j

where the following notations were introduced 3

= a s = a S = Q I783 - a

S )
" 1 2222 22 ! 1122 2 1212 66 '

9'1111 :911 ' 2zzzz - 222 ' 9 : 9'12 ’ 1213 ] 966

n22

Let us consider in details the case of a weakly anisotropic material,
In this case the perturbation method can be used, According to this
method, the gquantities characterizing the deviation of the properties of
an anisotropic medium from the corresponding isotropic material are taken
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as small parameters, and the problems of the isotropic theory of plasticity
(nonlinear elasticity) are obtained in each approximation, However, if
the perturbation method is used, with complex parameters characterizing
the deviation of the anisotropic properties from the corresponding iso-
tropic and linear properties of the material, we will get the problems of
isotropic linear elasticity in each approximation,

Assuming 9y = 2, we denote

1 =
a"____E, ’ am"'%’- (4)
The parameters «,, . o, are then introduced in the following relation-
ships
2(143)
azz'%(’4dz)'aas"L_-(, N AR
(5)
3 =
%s: "(E 'ds) ’ "/}:us (/o +O{j’) I P f+ay
where

o 2
L, 2 3.2 /:..;’( 40 6 6 12~ 7T
Jo=6u’6u-6nézz'3‘cu IR PR IS PR (e & 5o

there o¢; ,.4¢y o¢s are small parametiers characterizing the anisotropy
of the material, and ¢ 1is a small parameter characterizing the non-
linearity of the propertfies of material,

Using the conditions (4) and (5), equation (2) can be rewritten in
the following form 3

L 4 o, ()l’f ?.(Id ;’) r,)¢7 4 7
£ V}-‘[ ax; ' £ d’a.x:zdy-; ‘dﬁ{zjavf‘

——— e

3 3 3 : 73
+l/—f—° J/‘ Jf)+q_a__{?(3y a4 °F

Jy 3;.‘ Jx 2-7y dx | dx! Ix 35,2
9/ 2y I ) 23, (J 27 . % 227 3/,
— - — * —— —— —
r?y r?y Ax? JIx? (?g dx? J.rdy arJy

—_ —_

°3x"

' a‘y af, 2’7 3. Y ‘7
(R o
°dx? Jy ()I dx ay sz Jyz
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3 2 3
34, 3’7 a/ 37)4,,0{ ff QA
dx Ix? " Ix? 9x?

3 32 2 af, ¥
af., ¥ f_ _a~i)+2d/7”}"+//d— T3

a4, #7 34, ¥ )]} -0
— + —e s T T )
! Ay ayaxl dx 3y Jx Iy
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— 1
1 ay Jyj szc?y

af, 4% 37 J /, ar 37y 9% 43
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az] ] [ ( aﬁ?‘
— ]+ —_—— e [+ &
*Zaxz) G“axay 3x dy '35/2""
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SRl ) LGS AL

(6)



- 48

The solution F(x,y)of the differential equation (6) is a function of the
small parameters introduced in this equation, This function, which can be
denoted By F (z,y,a;), can be éxpanded in series in terms of powers .of ;.

~7(‘r.y'°";)= fo{,:’y)+ _'f,o(, ofzorz;]soljh?;cth]su; + };0'6

+

2 2 2 2 ? 2
+ + F o+ F x v e xx v F
"770‘1 'jsdz Jgdj 4 n s 2 6 13 12 w t 3

+ 7 o +F o & +F o« o +F o o
'?Isdydu‘yrsdids % T ey T T T W T 0 s (1)
+ o +F d o +F v +F o t T oA
* ?;,O(zd‘fjudad" ?25 3 € 2¢ 3 6 T2s « 5 T2 46 15 6 |

Substituting the series of ¥ (x,y) in the differential equation (6), and
expanding the terms in powers of «;, the coefficients of all the terms
should be equated to zero so that equation (6) is satisfied for all the
values of x; 4, This requirement leads to an endless system of biharmemnic
equations for the determination of the functions ¥,, ¥ ,..s The first of
these equations can be written in the following form :

7“7 =0 ' (8)

The di%ferential equations, obtained after equating the coefficients of
o,y a; and o o, to zero, will have the following form 1

v‘*5’+AJ =0 4 j=4,2,..., (9)
Moreover, 4; represents expressions composed of the functions :Z ’ 3} seeany
35_4 and their derivatives; consequently, it represents the already known
solutions of previous differential equations, Although the expressions 4;
are determined without any main diffioculty, yet they are quiokly complicaved
with the increase of‘j. It is noted that the function 3€ will satisfy the

boundary conditions 3

61 =0 fza = 0 at z=a |
P P
61=-§(1400529) , 68'3("50529) (10)
7 00
P
T —.---—sin?@
18 2
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This necessitates that the function :6(3#0) should satisfy the zero
boundary conditions,
The equations of "f; are obtained as follows 1@

7
4 °
v .7, =-2(I~'¢) E‘z—;;;- )
17
by .70
4 fz ) axu !

- 37,
alo 3%, ° )*
v, —Elen07, 457 (55 ax,ay Jx s, — o

(11)

2
2, af a;.) ( )+6 27, _"_f;]
3_1/ Jy dx Jy Jx Jdx J_f/ axay

etc,

Having the expansion (7), it will be possible also to find expressions
for the components of stiresses and, consequently, for the deformations
and displacements, in the form of exponential series in terms of o; ,

The solution of equation (8 ) under the boundary conditions (10)
is a function of the stresses ¥, [6], and takes the form 1

(z%a%)’

P 2 2 k4
];3'7[ -2a &1;- 2 c?SZB] . (12)

Taking into consideration that

] 4 !
x=vcos 8 ,3:—:0595;- —z—sLnGé—é .

. 3 Jd 1 2
y:'tsma’é—:stnﬂé—z 4—{ (05960
and using equation (12), the right hand sides of the equations of %, ,%and

3% of system, (11) are calculated, Therefore, the following nonuniform
differential equations are obtained :



- 4 (7*0)3

V]'=-2 [ja r0546+/4p +10p )roséﬂ/

V"Jz = i—i /3‘p"cas 48 +/~ llp—u mf‘)cas 68]

4

JPJE 5 g 1] 12 é ]
Vjc:-_ﬁ[zf ¢ 870%-312p" 1 500p" + (-90p° + 424p* -
(13)

-876p s 756_{3’2- 8709”):05 28 *(pr[’- 7296* 180P8+ 8!}1")(05 48+

|

+ (36.9"- 12253‘) cos 68

a
where £ =%

Solving these equations under zero boundary conditions, the stress
functions F and 72 are derived

T -6(1+ J)Paz/-w:ras 48 é{»lu.): ¢ mw: )cos 66] ,

A 2 ‘
.;: 3 Pa [3 w!cas_lia 4/—4:.:: ¢ /Ocu:)cos 60] . (14)
vhere

4 1 ¢ 2

o 10 20), 0 (1h2phap), e (ot 2
Similarly, the function ¥, is derived,

Moreover, knowing thé value of the functions ¥ 7 2 and £
the right hand sides of the equations of % %y %, ?ﬂ s Fog s Fu s Tag
and Zn are calculated, and a new value is found for the functions of
stresses and the stiresses themselves by solving the equations, The final
equations are not introduced here due to their bulkiness,

Now all the relationships are transformed to the dimensionless form:
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G
where(a's:.-rg ,@:37’3’- and f,; = the value of the function f at which
cons:‘aderabgle nonlinear deformations appeary f; is obtained from
fo(é"e ' Oy ,'l'zg) (5) at e_-_-_Jl'l_ B P-%:(-
The expression of the stress A at ¢ = 1 can be rewritten in the
following form :

- P 2 2
60 =2/—? {% {9)0(p,(d,,dz,9)*'l’z (o{' y Xg Xy, B)-

p (15)
2
_Psfds[%(g)ft}’,,(d“d“cxs,d‘,,us,é)]} ,

where £ , ¢ , ¢, , ¢, and ¢, are functions which can be easily _
expressed through Z « Using this equation, the variation of the stress Gg
along the contour of the hole at € = a(f=1) was calculated, Moreover,

the material constanis introduced in the expression of Gg , were experi-
mentally determined for a plastic reinforced by fibre glass, made on the
basis of polyester resin PN-1 with fibre glass T-1 as a filler, The
coefficient k = bn/2n-1 (1) the Young modulus E, the Poisson's coefficient V,
and the parameter £, were taken as follows i

-11 2 -
K= 0.035+ 10" (cm/rg) , E=1.510Kg/eak , n =2 ,

2

Y=0.12 , £ =0.36.10° (kg/ent) .

The results of the calculation are given in Fig, 2-4, where the dotted
lines denote the curves representing the isotropy of material, whereas
the solid lines denote its anisotropy,

Fig, 2 shows the distribution of 6, along the edge of the hole at
P=1 and &¢ = O (elastic solution), The sign (X) denotes the values of the
sjresses obtained by taking into consideration in (15) the terms up to
o;({=1,2), including the case when o, = o, = 0,2, Curve 1 represents the
zero approximation ( =, = o4 = 0),

The calculation has shown that the difference between the first
approximation (considering the terms up too; , including the last ons)
and the zero one does not exceed 10%, whereas the difference between the
second and first approximation (considering the terms up to aﬁ y including
the last one) does not exceed 2, 5%,

For comparison, the distridbution of 5; (curve 2) as calculated by
the following equation 3

G, =._L__’/Q 2 )
D 21'2’5,/»// Z c059+(4+n)$m6]
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is shown in Fig, 2,
where

. “
/ L E L, S8 g1 23y ., 2 cos'8
n 2(52 ’1)’ G ’ N— E’ + G— - —E—)SLH BCOS 64 E

1 2

is determined by the exact solution of the linearly elastic anisotropio
problem [2] Curve 2 is calculated for &, = «, = 0.2 at

1 roo2(red)
ECE(HQJ;5;=~7?—ﬁidJ

The deviation of this curve from the exact solution of the second approxi-
mation does not exceed 2, %%,

In Fig. 3, the distribution of 6, at o, = «, = oy = e, = g = 0.2,
otg = 0,756°10 ° and P =1 is given, This distribution varies with the
number of terms taken into consideration in equation (15)s Curve 1 corresponds
to the case when the first term of the equation was considered, curve 2 -
when the first, second and third terms were considered, curve 3 -~ when the
first and fourth terms were considered, whereas curve 4 corresponds to the
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complete utilization of equation(15). As clear from the graph, the nonlinearity
of the material has & more significant influence on the variation of stress

than anisotropy, It should be noted that if the anisotropy of the mechanical
properties of the material was not taken into consideration o =0(i<l1,2,3,4,5),
then the given solution would have coincided with the solution obtained by
Kauderer [6], The variation of Gp with the increase of load (the curves
1, 2, 3 and 4 correspond to loads 2 = 0,8; 1y 1,23 1,5 for an anisotropic
material) for the same values of the parameters ec; 4y 1s shown in Fig, 4,

As seen from the graphs, the maximum stress 6, decreases as a result
of nonlinearity and anisotropy of the materialy with the increase of the
load, the maximum strese &y will be displaced, ]
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CROSS BENDING OF CIRCULAR PERFORATED PLATES

By
V.1, Astaflev

Let us consider the case of bending due to a side pressure of
q(x,¥), moments of m(S) and h(s) and shearing forces of P(s), applied
on the contour of a thin homogeneous isotropic plate of thiokness
(see Fig, 1), The plate is multilinked and is limited by a composite
contour of L = L, + by + .44 + L,» It is assumed that the plate is
linearly elastioc and obeys the conventional hypotheses of the theory of
bending of plates, The stress and strain states of the plate can be then
determined by the bending of the middle surface w(Z,y) (see, for example,

references [1] and [2] « Thus , we have :

e 2 R
3w w
e E )
iw  w
MDA
.
H  =-Df1-V)-22% | | 1)
xy ( )c?xay
a
N.‘(:_D(;; LW '
3
N . —
y 'Dc?y ad ) J
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where M., M and H, are the specifio bending and }orsion:ssl2 momentsg

N, and Ny are the specific shearing forcesy D = Eh /12(1-1!) is the

cylindrical stiffness of the plate; E and M are the modulus of elasticity

and Poisson coefficient; A= 23x" + 32/392 is the Laplace operator,
The equation of bendingw(x,y) has the following form 3

Abw =9 /D (2)

In polar coordinates (%,y), expressions (1) and the Laplace operator A
are written as follows 3

M <-D(=5 +

Pw Y Idw azw)
i e v Ju oz 3,/

¥ 21t v g ¢! aqu
1 w1 dw (3)

HZ(P--D{,— ‘))-Z—g'z_:)_c;—:z;-af) !

N=-DZ sw |, '

(4 . ') ’

t 4

N’P=-D;§:;Aw R
' ELEE I A

bz — 4 — — ¢ —, J

dzt t dz Tt dp?

The general solution of equation (2) can be written as the summation

v = w, + w,, where 1, 1s a certain particular solution of equation (2),
whereas w; 1s a biharmonic funtionj the general solution of the biharmonic
equation is given by AAwW= 0. According to the method of NoI. Muskhelishvili[3]

the biharmonic function w(x,y ) can be represented in terms of the two functions
¢ (Z) and X,(#) of the complex variable 3

W =20 Re [24,(2) + A,(2)] (4)

These functions are analytical in the zone occupied by the plate, Let us
take for w, the function of bending of & unlinked plate subjected to a
side load of ¢, In polar coordinates, w, can be written in the form [1] $

-~

290ty p B (e xteD,)e cosny )
+ —ﬁ(coz 4D°+Z (C"z +Dn)z cosny (5)

act

q,t
Yo eup



or

gzli? 2 - 7
w°=6¢/1) 4—;9':?9{2%{2)4 XO(’-)} , (6)

where

o ©
‘Fo(z):lzocnz"vxo(z)zzDnl"’z’x"y ,i‘x":y'
n=0

n=
Therefore, the general solution of equation (2) acquires the

following form 1
e

g2%z% 2 -
W= 6#; +-~1%—Re{ztp(2)f 7(1)} ’ (7)

where
(2)' 0 () A =(2) X" (2)'be(2)°h-(2)
The moments and shearing forces can be expressed in terms of ¢ (2)

and X(Z) as follows 1
Mx*My "M! #Mwu—lfq{loi){tf'/z)-; ;71‘)_)-

sl
¢ oo >
My~ M s 2ed  =(M M 2204, )& (8)
- " 1] "; :
=4 (1- )2 e 2) e x"(2))+ "{8)52, f

N 'iNy:(/Vt-i”w)o.”p:-ﬁq‘f"/z).

: ¢

In [2] it is shown that in the general case of a definite multilinked
zone, ocoupied by the plate, the funotions ¢, (2) and X, (Z) ocan be

repreaented in the following form 1@

W,/l)=g,(Apz *ar)fn(z-zp)uf‘ ()
me (9)

K,()-F (d,200,)0n(2-2,)¢ L, (2)
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where A, and o are substantial constants, @, is a complex constant,
(&(2) and X,(?)are regular functions in the zone occupied by the Plate,
and Zp is the internal point of the L, (P =0, 1, ..., k-1) contour,

If L, (P= 0,1,,44sy k-1) represents ciroles, then according to [4],
the functions ¢4 (Z) and X, (Z), whioh are regular outside these oircular
holes, can be written in the form of Appel's representation :

et Py £
P, (2): 5 & — .
p:0 nrt (Z-2,) (10)

L LN ["
x.(l):z‘ b _.___P__n_
P20 n-y (l'zp)

where Z, is the centre of the L,( = 0,1,.,ss,k-1) cirole,

The boundary conditions on the external corner Lk will be 3

w
w=0 |, %;’- =0 on Ly (11)
in the case of a firmly supported external contour, or i
w=0 , M,=0 on L, (12)

in the case of a freely supported external contour, where n is the
external line normal to the L, contour,

If on the composite L' = L, + L + .., + L, contour the force flux
p(S) as well as the moments m(S) are given (the first basic problem of the
theory of bending of plates), then the following boundary problem will be
obtained for the analytical functions ¢ (Z) and Z(Z)

‘3‘3‘1"(3)*“7'7,2-)'}!'(/1)’/,%]2fiCozoC, on L 13)

where x=73—;"%} 3y C is the substantial constanty; C;, 1s the complex

(-}
constant and © 1is the angle beiween the line normal to the L' contour

!

/’oifz z 2_97;':)-)[3(”7”-/){‘{.! + “dﬁ'}'!(mo i f, )(d_raidy)/;
(14)

$ $

S(s)={pls)ds ; %, (5)'JP0(§)U" ;

mo(s)=- 2 [8(149) 25« 2(1-3) 2% % %) |

1
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220_ 2'2-0)_

5 (s).-—-[zb(r (e
s (14)
-15;S(idz-:di)], rel’

and the axis r , The boundary condition (13) can be represented in the
following more convenient form [4] 3

2 (1) P (2)H(F (2] e X (2)e 0 f e ift e, onl (15)
wherse
/'IJ[/;,—Z—(,-—I)[( ~t/) /rn '1/ )]

In the case of the second basic problem (on the L' contour the
deflections and tilt angles, i,e, the dw#/dn ratio , are given), the
boundary conditions can be written in accordance to (13) or (15) at

Jw\ 8 1 .-

. WL == o : L .
2=-1 ; 4+ if,: Zg an 2 < /€ 3 272 | 2¢€ ;

‘ - 2.8
J:*”/z‘:z 9"( —)-_(222 2'e™) , zel!

Let us oconsider in details the bending of a circular plate of a
radius a, perforated withk uniformly distributed oircular holes of radius A
whose centres lie on a oircle of a radius b at the points (see Fig, 2)

=bexp(2p(,ﬂ/h), (p_O,i,-...,K-{) ’
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i.e, L, is a cirole of a radius a, whose centre lies in the origin of the
coordinates (L' = L, ¢ L, + .o + L, ), and L, is a cirocle of a radius A ,
whose centre lies in z,(P = 0,1,,4s,k-1)s Let us introduce the following
two systems of coordinates: (%, (p), whioh is related to the plate centre,
and(P,0), which is related to the hole centre L.z = b+ &t = b + P &' ,

It will be considered that the contours of the holes are free from external
loads on L', i,e. m(s) = P(S) =0, If g has the property of oyolic
symmetry, i,e, it is equal and invarient in the case of rotation of the
system of coordinates (%, 90) by an angle multiple of 277/k, then the defleo-
tion #*, the bending moments M., M, and Hup y and the shearing forces N, and
N(p s Will have the property of oyoclic symmetry, From the condition of
oyolic symmetiry it follows that i, (Z) and % (Z) will have the following
form 1

tpo(z)zznf;o c,,z"”; L,(2)=X D,z" (16)

whereas the coefficients A,y opy @py, E, and Fy (Ps 0,1,444,k-1) in the
expressions of ¢, (2) and A,(Z) will have the form

(a7
where
e« exP(ZpiJf/k) ;o PTO1 L, k-g

From (16) and (17), the expressions of ¢ (Z) and X (Z) can be re-
wrltten as

ald nk k-t
v(2):22 € 2 +% [(A248ep)t’n{z-zp)+
n:=0 P, 0

o E ne !t
+ > nfp ]
nel (z-zp)”

’ (18)

20

©0 F en
+ D - ]
nxf (2-2’) J

Y(z)= & Dn 2" Z [(Bépz so)lafz-2,)
n» 0 P




Then, the deflection #» can be written in the following form s

23t 2 n
w-32 B pels (c.23+p, )27
64D D a0 ”
k-1
+;§0[kAzi +Be,z +BE, 2 +o)lnfz-2,)+ - (19)

ns: {1

o0 el‘l
7+ F S A—
Elee et )or ]

For a freely supported plate, the boundary conditions (12) take the form :
w:0 — +— — =0 -
' 2 at 1=a (20)

To fulfill the boundary conditions (20),uf is expanded in series in terms
of ¥, and the real part of these series is taken

w=iz—'+ﬁ c z&_D 2p
660 ‘D157 , * KAy +kalne -
(L2
'ka451([nzz#p")!’nkr0$nk‘p + ()

ns J ’

© nk
v = (P’nyl.P“)(:,b) casMup] : [7;.5)

where
kB e () AT 5 )
> am g ket ! nk
P kZ F b (m_,)-; o+ Bb ;k_’) ;
(M) = Cm - binomial coefficients,

Craus [5], solving the problem by an another method (vy constructing a
biharmonic function having the property of cyclic symmetry with the aid

of Hawland's representation [6]), he was able to derive a similar expression
for v, However, an erroneous solution was derived when the obtained
expression was expanded in terms of Z, In the expression of B and R,
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1 B nk 1
2(p ¢ 2 = .
the corresponding terms n(A b _1) and n(o:: + Bb +l) are absent

Substituting (21) in the boundary conditions (20), the coefficients C,,
D, C, end Dn(n 2>1) can be expressed in terms of &, B, , E, and F,(n31):

1 3+9 2 ! 3+ r /-9 -2
- — e a - - — kA4 — kaa ;
€ 64 147 a’-kAlna 270 T
! )
D:-’_ 5‘—)a"+—- 3" kAaz+ka -
© 728 143 2 149
fI- (22)
- - ——  k ;
kor[na 27y o

nk !

e (e e P )a) o

b nk 7
D, = (C3,‘ p,,, * Cin PZn )(—CI—) ’ _a—"; / '
where
{.'4”(/.'&—]) c (1-V) nk .2
= 7 T - — a

fn 2nk « et ' 2n 2nk +¥+71

(34#)/7/( 2 {]09)(nk47)
c, s-—m—————a ,; €, =--
in 2nk ¢+ 9+ 1 4n 2nk+der

According to the property of cyclic symmetry, the curved problem (15)

for ¢ (Z) and X(Z) will have the same form on each of the Ly, P = 0,1,s4s,k-1.
contours . Therefore, this problem can be considered only on the L,
contour, Writing the expressions (18) in the system of (§, §) coordinates

(where Z =b+t ), and expanding them in series in powers of ¥, , the following
results are obtained for A, B, En’ o and Fn 3

A:—'A?/"é H B = - Ab ] (23)
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For the determination of E, and F,, an infinite system of equations with
an infinite number of unknowns (25) was derived, It is possible to show
that this system will be quasi-regular for any zone between the holes, In
fact, we oan consider, without violating the generality, that the radius
of the holes is A = 1. Then, |b = Z,|> 2 for p = 1,2,444,k-1, b > 1 and
b + 1<a, To ensure the quasi-regularity of the system it is necessary
that the sum of the n modulii of the coefficients with the unknowns E, and
F,, should be limited for each value of m (beginning with a certain number
for m) and should be less than unity [7].
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and ;,IMM' and :,,lNonl are limited quantities, then it is clear that
each of the four sums is limited for any value of mand tends to zero when m
intends to infinity, whioh proves the quasi-regularity of system (25).
Therefore, system (25) can be solved by the method of reductions [7] and
it is possible to find out a Bolution for very close hole boundaries at any
degree of accuracy. For three holes, system (25) becomes quite regular
for A/b less than the numbers (for b/a = 0.3, A/b < 0.16; for b/a = 0.4,
Nb £ 0,213 for b/a = 0,5, A/b< 0,23), i,e, it can be solved by the method
of successive approximations [7].

After the determination of the unknown coefficients E, and F, in
equations (22)-(24) from system (25), C,, D,, C,y D,, A, B, and, conse-
quently, the unknown functions ¢ (Z) and X(%), are derived,



- 66 -

The distribution of the moment Mg on the contour of the hole L,
is of great significance, Since MP = O on L' according to the boundary
conditions (15), then we can write the following expression for “e on the
contour L,

Mg Bo(red) o g(109)
M—;:———;‘o—— Re ¢ '(2) TR 22 (30)

at 2:b+6 ‘|

L6
where 6 = Ae” and M, is the maximum moment in the rigid plate.

For a freely supported plate, M, = 9(43: W 2.

Calculations were conducted for the following casest 1) b/a = 0,3,
n=1/2,1, 2 and 43 2) b/a = 0,5 n =1/2, 1, 2 and 4, where n is the
distance between the holes, expressed in units of the hole diameter (see
Figs. 3 and 4), With the increase of the distance between the holes, /‘/9//{0

tends to a constant value A{;_-_-Q_z. ?_‘f A)z « With the adherence of
w\a :

the holes, the maximum valueo/%/Mo moves from the point O = 77 to the
point @ = 27/3 , i,e, the maximum twisting moment on the hole contour is
located at the point of minimum distance between the holes.

2, ~ =
A, | f=0s |
%‘x R —
. (o — e IR
mt \-—/_1—‘,-:-:-"4
\__/;,‘hndlz
1 N
8
< i/ < < v

Comparing the results of calculation with Kraus's results [5] it can
be noted that for large distances between the holes (or small values of A/b)
the divergence will be very small, since for small values of A/b the terms
not ocnsidered by Kraus lead to an insignificant error, whereas in the case
of adherence of holes (increase of A/b) the effect of the unconsidered
terms becomes significant and the divergence in the results will be signi-~
ficant, Therefore, for n = 1/2 and 1, the values of Mg/ﬂo obtained by
Kraus are 10-15% lower,
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INVESTIGATION OF THE STRESSES IN A PERFORATED DISC
SUBJECTED TO CROSS BENDING, USING AN OPTIGAL METHOD

By
L,S, Zlenko, A,M, Lokoshchenko and V,P, Netrebko

Strictly speaking, the caloculation of a perforated construction is
based on the solution of extremely complicated boundary problems for mul ti-
linked zones, In this case, the issue of concentration of stresses near
the holes and, particularly, the mutual effect of these holes on each other,
acquires a conslderable significance, In the literature, there are some
solutions of similar problems under very specific conditions, There are
yet no solutions for plates with large numbers of circular holes of different
radii and depths, The only reliable method for the investigation of such
types of constructions is the optical method of determination of stresses,
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Fig, 1
A description is given below for the results of investigation of a
natural disc with a concrete system of holes by this method (see Fig, 1,
where the dimensions are given in mm), The disc has three types of holes of
13.5mm depth (measured from the upper surface): through-holes, ¢ = 22,5mm
(1) 3 opened -holes, ¢ = 12,5 mm (II), and blind-holes; ¢ = 8,5 mm(III),
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The behaviour of such a disc, which is subjected to a uniformly distributed
side pressure and which is hinge-supported along its contour is considered
in the elastic zone, For the determination of the stress state in the
natural disc, a disoc of similar dimensions was constiructed, The model-disc
had the same system of holes and was made of the optically sensitive poly-
meric material ED6-M,

The method of “freezing" of deformations was used, This method is
based on the character of some optically sensitive polymeric materials, ‘
According to this property, the deformations arising in the models of these
materials due to their loading under the conditions of elevated temperatures
are fixed (frozen) by coaling (under load) to the room temperature, Besides
the deformations, the pattern of interference strips, related to these
deformations, is "frozen", After "freezing", the necessary number of
plates is cut from the model and the stress state in the investigated
point is measured, The plates (sections) are investigated in the same way
as in the solution of plane problems,

The sequence of "freezing" of deformations for the utilized ED6-M
material was as follows: heating, in the course of 3-3,5 hours, up to the
"freezing" temperature (of the order of 130-—-135°C), rreserving it at that
temperature for about 3 hours, cooling down to the room temperature with a
rate of 5-— 10°C/hr,

The deformations in the model of the disc with holes, which was
subjected to a side load, were "frozen" in a thermostat of the type VTS-1,
The rate of heating was controlled by the intensity of the current fed to
the heaters, The heat in the operation chamber whose dimensions were
500x700x700 mm, was controlled by means of four thermometers, mounted at
different locations in the chamber, The temperature control was provided
by a contact thermometer,

For the observation and photographing of the patterns of interference
strips and isooclinals in the sections, & polarization BPU set (of the type
IMASh-OKB-2) and a coordinate synchronization polarimeter of the type KSP-5
were used,

The optical properties of the model material at the "freezing" tempe-
rature were determined by testing the calibration of a circular disc on
its diametrical compression by two concentrated forces, The measurements
were oconducted by the use of a violet fil ter, which extracted from the
mercury spectrum a wave length of A = 4358 A, The calibration showed
that the optical constant of the material is &, = 0,408 kg/cm,

According to the data of the method of optical polarization, the
differences in the quasi-principal stresses (i.e, the difference between
the maximum and minimum stresses acting in the plane of cut) in the plates
cut from the spatial model after "freezing" of deformations, as well as
their angles of inclination, can be determined, For the entire determination
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of the components of siresses in an arbitrary point of the spatial model,

it is necessary to conduct some optical measurementis in the plates, cut

in three mutually perpendicular directions, It is also necessary to

integrate the equations of equilibrium of the spatial theory of elasticity (11,
In the general case it is necessary to have three equally loaded similar
models,

Let us consider the investigated model of the disec, perforated by
a system of holes, as a spatial oylindrical body, For the full investi-
gation of the stress state in an arbitrary point inside the disc it is
necessary to have three sections passing through the given point and
coinciding with the coordinate planes 206, 20z and 200, Since in cross
bending of the disc the stress state in its plane is the major determinant
factor, then it will be possible for finding out the dangerous zones to
confirm ourselves to the investigation of sections parallel to the neutral
plane of the disec,

The determination of the stresses on the free contours of the model
is highly simplified, For example, if in the plane of the section parallel
to the z0@ plane, there is a oircular contour free from stresses, then on
this contour 74 = O and 6, = 0, whereas

6, =6, m/h (1)

where h is the thiockness of the model and m is the order of inter-
ference strips, The value of the circumferencial normal stress 6, was
taken as a quantitative measure of the siress concentration on the contours
of the holes,

Following such a method, the features of stress concentration near
the holes of the considered disc could be studied, The model disc was
supported along its contour, Using a heat-resistant paper, the model was
evenly (including the area of the hole), loaded by a weight of P = 4 kgf,
and then it was located in a thermostat of the type VIS-l, In the thermo-
stat the disc was heated to 130°C and was kepti at this temperature for
3 hours, Then it was cooled to the room temperature and unloaded, After-
wards, two specimens (A and B) (see Fig, 1) were cut from the disc,
Specimen A included a part of the diso perifery, and specimen B was
located in the middle part of the disc (the side edge of B passes through
the disc centre), It could be considered that the investigation of the
specimens A and B gives us a pattern of the siress state in the whole disoc,
The specimens have three large opened holes of the type I, as well as a
large number of holes of the types II and III, Four plates were cut from
both specimens, parallel to the neutral plane of the disc, Each of these
plates had a thickness of 3 — 4 mm, The upper plates were denoted by the
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subscript 1 (A4 and B4) and the lower ones by the subscript 4 (A, and B,).
The blind holes intersected the first three plates, All the eight thin
plates were investigated on the polarization BPU set, The obtained
results have shown that the difference of the quasi-principal stresses
attains a maximum on the contours of the holes, Therefore, it is possible
to confine ourselves to the determination of the stresses along the contours
of the holes., The polar distribution of the dimensionless circumferential
5;==69h/c; stresses along the contours of some holes is shown in PFig, 2-4.
It is clear that according to (1), the magnitude of 6 coincides with
the order m of the interference stirip in the considered point,

Specimen 4 has three opened holes (I) and a large number of blind
holes (III), The experiments have shown that the stresses in the two
intermediate plates (A2 and L3), near the neutral plane, are very small,
i,e, the periferal part of the disc exists under the condition of almost
pure bending, Therefore, the primary interest in specimen A consists in
the investigation of the siress state along the contour of the hole in
the first and fourth layers,

The analysis of the experiments has shown that the mutual effect of
the small holes (III) on each other is insignificant, The distribution of
the 5; stresses along the contours of large holes in A have a cyclio
symmetry with a maximum of o~ 1,5 (in the direction of the neighbouring
small hole) and a minimum of — 0,8 (in the intermediate direction between
two neighbouring small holes), The similar distributions in A, vary insig-
nificantly, since the blind holes (III) do not reach the lower plate 4 .,
The highest &, stress in the whole specimen A is observed in the con%our
of the holes III ( &, — 3), and in the points located along the
direction of the hole 1,

The distribution of the ég stress along the contours of the inter-
mediate hole I (see Fig, 1) and the holes III adjacent to it, is, for
example, shown in Fig, 2, For convenience, the distribution of 52 stress
along the contour III is excluded from the drawing, In Fig, 2-4 the
direction towards the cenire of the disc is indicated by an arrow, and
the dotted circles indicate the scale,
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Specimen B contains three large opened holes (I) and a large
number of holes of the types II and III, The analysis of the photographs
of the interference strips has shown that the two upper layers of
specimen B (B{ and B2) have insignificant stresses, This can be
explained by the following t Specimen B is located in the central part
of the model, In this part the state of pure bending is superimposed
on the all-sides tension, provided that the disc is subjected to a side
load, Therefore, the two lower layers of specimen B (B3 and Bk) are more
loaded than the upper ones, Moreover, the highest siresses will arise in
Bk' Apart from those of the three holes (I), the maximum stresses will
arise on the contours of the upper and intermediate holes (see Fig, 1),
which are located very near to the disc centre, The distribution of éb
in B along the contour of the intermediate hole I is shown in Fig, 3,
whereas its distribution along the contour of the lower hole I is shown
in Fig, 4. As in specimen A, the mutual stress concentration near the
holes of the types II and III is insignificant, In the neighbourhood
of the intermediate hole (I) of the large radius there are 4 holes of
the type II, which lead to maximum ég stresses, Along the contours of
the I and II holes (see Fig, 3) the stress amounts to 365 —4,5 in the
mutual direction, whereas in the rest part it amounts to 2+ 2,5, The
variation of the stress along the contour of the lower hole (I) of the
large radius (see Fig, 4) is insignificant (é%~u~ 1), since there are no
heles In its vicinity,
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The distribution of stresses in B3 is similar to those in Bu‘
But the stresses along all the corresponding holes are approximatély
2 times less, Fig, 5 shows the scanning of the distribution of the 53
stress along the contours of the intermediate hole I (solid lines) and
the neighbouring hole II (dotted lines), From the analysis of the
photographs of the interference strips it is possible to conclude that
the maximum stress concentrationa in the disc take place in these locations,
From the analysis of the interference patterns in the whole perfo-
rated disc it follows that the highest (circumferential) pressures are,
according to (1), equal to 1

G _ &M _ 0u08X W5 kg _— o g, K

Stresses arise in the solid circular disc of a radius a, which is hinge
supported along its contour and subjected to an evenly distributed
pressure ¢, with their maximum lying in its centre [2]:

2
G - 3(3+1V)%a _ 3(3+)P = 3X3.5xk _ g.uqke
Smax gh? 87 h1 8x3.14 Xk ca?

where VU =0,5 1is Polsson's coefficient of the utilized material,

Therefore, the maximum pressures in the disc are highly increased
and displaced from the centire to the contours of the holes as a conse-
quence of perforation,

After the determination of the pressures in the model it is necessary
to solve the problem of transformation of the results of measurements
from the model to the natural construction, The conditions of transfor-
mation can be obtained from the laws of similitude, These laws express
the relationship between the basic quantities determining the flow of the
processes in the model and the parent construotions,

To simulate the stress-strain states of the model and parent
construction i1 is quite necessary to satisfy the following requirements:

a) the model should be geometrically similar to the parent construc-
tiong

b) the investigated processes and conditions of the parent construc-—
tion and model should be described by the same equationsj

c) the initial and boundary conditions for the parent and model
should coincidey

d) the dimensionless parameters of the same notation, incoming in
the differential equations, boundary and initial oonditions in the model
and parent construction, should be correspondingly equal,
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The conditions of geometiric similitude are determined by the ratio
A= £ /E, of the characteristic dimensions of the parent consiruction (&p)
to thé dimensions of the model (fm), i.e, the scale of linear dimensions j,
In the case of a strict geometric similitude, the scale of variation of
the linear dimensions A, -nAfp/AZm should be also equal to A , i,e,
the amount of sirain in the model and parent consiruction should be equal.
However, in the method of optical polarization, the conditions of striot
geometiric similitude are never fulfilled, since the strains in the model
usually exceed those in the parent oconstruction, It is just required that
the proportionality of the strain in the corresponding points in both the
model and parent construction should be fulfilled,

The entirely closed system of equations for the determination of
the stress—-strain state of the body under static isothermal deformation,
includes the differential equations of equilibrium boundary conditioms,
equations of state and equations of compatibility., The system of differen-
tial equations of equilibrium, in the case of the given processes, is
valid for bodies of different materials, Consequenily, this system will
have the same form for both the model and the parent discs, The limiting
conditions will coincide if the loads, applied to the model, are similar
and proportional to the loads applied to the parent disc in the corres-—
ponding points, The equations of the state of the materials of the model
and parent discs are determined in our case by Hook's law,

On the bending of elastic plates, the stress in the mean plane in
the case of fulfilment of Kirchhoff5 conditions can be presented in the
following form 1

2
d=q’(9)%

where { 4s an arbitrary dimension in the mean plane and A is the
thickness, If the model is geometrically simulated to the parent disc, and
assuming that v, =,,, we get 3

G'F,=GM%£.
“

In general, Poisson's coefficients for the model and parent materials are
different, Moreover, in the method of optical polarization it is necessary
to work with increased (as compared with the parent disc) strains, This
leads to some unavoidable errors in the determination of the stresses in
the parent disc, since they depend on the properties of model materials,
The sources of errors can be determined either experimentally (by the
investigation of models with materials having different values of Poisson's
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coefficient) or by calculation (by the solution of analytical problems).
Therefore, for the estimation of the effect of Poisson's coefficients in
the problem under consideration, we should study the bending of a circular
rigid plate, which is hinge-supported along its contour and which is
subjected to a uniform pressure, The stress in the centre of the disc

is slightly dependant on »

&

émax =

3(3+)) 220.

gh'
If it is assumed that the Poisson's coefficient of the parent disc is
Vp = 0,3, whereas Ym = 0,5, then the error in the stresses will be
within 6%, A4ll the data obtained by the determination of stresses in the
model—-disc can be applied to a natural metallic disc almost with the same
accuracy indicated above,
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AN APPROXIMATE METHOD FOR THE ESTIMATION OF
THE DYNAMIC TEMPERATURE FIELDS

By
S¢As Shesterikov and M,A. Yumasheva

In few practically important conditions of operation of elements of
construction under elevated temperatures, cases are encountered when some
of these elements undergo quick and intensive heating. In such cases,
the estimation of the stirength, temperature distorsions and other effects
converge around the necessity of determination of the arising dynamic
temperature fields, Naturally, this temporary distribution of temperatures
in the rigid body should be determined with an accuracy not exceeding that
of the input data . Moreover, this distiribution should be expressed in a
form convenient for further utilization (for example, for the determination
of the fields of stresses in the infinite problem of thermoelasticity or
thermoplasticity). A version of the method of calculation of the dynamic
temperature fields is suggested below for a class of such problems,.

Let us consider & body (see Fig. 1) of a volume V, limited by a
surface S. The point P on the surface S5 is determined by a system of
orthogonal curvi linear coordinates « and vy the coordinate % is directed
towards the normal inside the body, It may be assumed that before a
certain period of time (which is taken as a reference) there was an even
temperature field in the body, It may be assumed also that beginning
from this moment a temperature field is created on the surface of the
body, which is dependenti on time according to the following relationships

T=Ts(p,t) . (1)

Then, for the determination of the temperature field in the body as a
function of the coordinates and time it is necessary to solve the following
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equation 1

xaT =217 , (2)
2t

where ¥  is the coefficient of thermal conductivity, The analysis of
the known exact solution of equation (2) under the boundary conditions (1)
shows that although, theoretically, the temperature in any point of the
body varies instantaneously with the temperature on the surface, then, in
reality, some gradual change will take plzce in the temperature of the
body beginning from the surface, This change attains real values inside
the body only after a definite period of time varying with the value of
the coordinateswr, Therefore, it is natural to introduce a surface
parameter L, which will be considered as a border separating the heated
part of the body from the part where the temperature up to the moment of
approach of the front can be practically considered constant, Consequently,
the conditions on L will take the following form :

T‘wze =0 and %%Wuuf =0 (3)

The solution of equation (2) under the conditions (1) and (3) can take
the following form 1 :

T(P,@;t)=ZA£(P,t)(F& g (4)

where (. is some selected basic functions, dependent on unknown para-
meters (the method of their selection is indicated below), Such an
approach is identical to the methods elaborated in similar problems by
several authors [1,2]. The functions Ai are selected from the boundary
conditions, Let us consider the particular case of selection of equation
(4). If we search for a simple expression of the type (4) it is necessary,
in accordance with the three boundary conditions, to assume that the value
of the three terms in series (4), is minimum, Then, we will have 3

T=A +A,¢ + A @, (5)

In this case it is always possible to consider that (. (0) = O, Therefore,
from the conditions (1) and (3) we will have 1 ’

T=T,[1+8,(0) ¢ (w)+ B,(£) g, (w)] (6)
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B = —_i__ B = %
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T:"}(p,t)(ﬁ(f,?d)

Let us change the variables by introducing the time t with respect to
the reference t,, according to the following relationship

t=(X/2)t (7)

where A is some characteristic dimension, All the coordinates
04,v3uﬁ will be considered dimensionless with respect to the same A ,
Then, equation (2) can be written in the following dimensionless form i

9 ,lylydTy d sLloblyw 3T
z(vLuwZ)+5_;( va 3")*
aT
v 3t

(&)
T
b (ete 20 L,

where Lame's coefficients are determined from the following relationships:

2V )2 e
caE) (5 ) (E) )
The yet unknown value of the depth of the heated layer { can be deter-
mined from the condition of the integral satisfaction of eguation (8) in
the heated zone

5[5 (Fete 2T ) S 5 )
lalawl L, du d» ' Ly, Jdv

+_‘2_ i“"")ﬂjdw]dudv = (9)
dw dw

: 4 aT
-..”{g LuLvaia_f, dw | dudv
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Let us assume that the heating process is, in some sense, almost regular,
Then, in this case, the first two terms in the left hand side of the
equation will be much less than the third term, As a result, we will
have 1

4 4
d sl Ly AT {
SR e Sl SRR ) = 10
{S{Ea ( . p ) ur}dudv !} ELuLvL atdw}a’udv ( )

Integrating the left part of the equation with respect to % , taking
into consideration the boundary condition (3), and substituting T by its
value in (6), we get from (10) 1

t

¢,
‘LL L —--t—dw}dudv = 0 (11)

d¢

1
weo 0¥ lwao

fh{—ese

sl Ly,

In the case when L, L and L, are independent of u and v, the function
T can be represented in the form of a multiplication i

T, =8(t)v(,) (12)
Equation (11) can be represented in the form :
{a_f IK(w)ﬂdw}”W{P)dUd” =0 (13)
w0 4
where
Lyly L
K(w)= urv - w

L“ LV/L“’,W:O

The second integral is a definite expression that is considered different
from zero, Therefore, in the fulfillment of condition (12) the following
equation is obtained i

4
¢ 0y
gl ~L s | K(w)-—L dw = 0 (14)
]wzo r at

dw
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Let us consider in details condition (12), In fact, this condition does
not put rigid limitations on the temperature field 7; or on the boundary
S, In most problems, the temperature T, can be represented with any given
degree of accuracy by the following relationship 1

Te28,(t) ¥, (?) (15)

Due to the linearity of the problem of heat conductivity, it is now
possible to find out a solution for one component and then to determine
the general distiribution of temperature as a sum of separate solutions,
Let us return to the analysis of equation (14), and use the exponential
functions as basic functions for <ﬂ and qz e« In the simplest case we
can assume 3

e (x)ex™ g ex™ (16)
Then, from (6) it is easy to get 3
w w
fE "0‘2?,(7)*0"4’2(7) (1)
where

ny
X, = —
‘' n,.-n

2 ]
The preservation of the arbitrary values of the indices n, and n, in
expressions (16) is Justified by the fact that in the future it will be
possible to improve the solution by the corresponding selection of these
parameters, using, for example, the principle of least square deviation
of the solution from the exact one, with respect to volume and the charac-
teristio time, For example, we have 3

[o¥)

j=O
g

QL

.3_7- =0 and
27,

where

U(n"nz)zi{EES(aT-'i')zdv}dt . (18)
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In this case the ocharacteristic time U 1is selected from the condition
that the whole considered time interval t was taken,

It is clear that the method can be also generalized when a large
number of basic functions and unknown parameters is introduced, However,
due to the sharp increase of the volume of investigation such a method
begins to loose its advantage before the exact solution of the problem
of heat conductivity in series and in numbers,

Let us consider the application of the mentioned method to the
calculation of & concrete element, We may select, as an example, the
temperature field in a oylinder whose surface temperature & is given,
As an approximating system of the functions qa , and q% let us take 1

2
¢ =x ’ ¢ = % (19)

Then, from (17) we have 3

9 2
cp:f—a—'ze‘i+%=(4—%) (20)
Substituting (20) in (14), we get 1
4
_3[9- +[h'(-w) %—t—(e(p) dw =0 (21)

Let us introduce the cylindrical system of coordinates with the 2 axis
coinciding with the cylinder axis, Then, if the radius of the cylinder
is denoted by R, and R is taken as the characteristic dimension A , we

will have 3
u=g ,Z//?:?], 24)'::"—’5/[?

From which we get 3

k(’ZJ) = 1-W
Substituting this expression in (21), we get ¢

/4 w2
_Eg*z(,-w)%[g(x-ﬂ Jdw (gz)

Let us consider the steady state when O = const. Then, equation (22)
can be rewritten in the form 1

(1-w)-2(1-5 )- 53 fdw =0 . (23)

+

2
e

O e gy,
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and it is easy to get an equation of the form :
2 = (2-00¢, (24)
Integrating the last expression we get an equation relating / with t
12t = ?1—_5_, (25)

For the dynamic external field, when O depends on t, the equation
becomes more complex, But for definite laws of the relationship 9 (t),
this equation ocan be integrated in a closed form, For the considered
case, the equation of T, t and ¥ can be obtained in a parametric form 3

T=9(l—%’.)a at w<?{

(26)

T =0 at w>/¢

H

where ¢ and t are related by equation (25). The obtained relationships
are valid for that moment when ¢ becomes equal to 1, From (25), we get
the value of t, for which { =1, Further on, the temperature field will
vary in the whole cylinder, and instead of the boundary conditions (3) we
will have the following condition 1

QI = 0

dw lw=A1

Assuming once more that the temperature field has a parabolic relationship
with %, we will get for T the following expression :

2
Tza (1-w) +6 - a (27)
In deriving the lasti expression the indicated condition, as well as
condition (1), were used, The parameter @ (t) can be determined from the

condition of integral satisfaction of the equation of thermal conductivity
(either type (10) or (11)),i.e.

{
-2a +‘/(4—w)d[(4_w)3_4_7dw=:0 (28)

Using the condition t =1t a=6 , we get 1

a = Be-’(t-t") (29)
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Equations (24), (25) and (27), (29)represent completely the relationship
between temperature and time, as well as the coordinate®, The comparison
of these relationships with the exact solution [3] is represented in Fig, 2,
In this figure, the solid lines represent the curves obtained from the
exact solution, whereas the dotted lines represent the curves obtained
according to the suggested method (the values of the dimensionless time
are marked near the corresponding ourves),
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RELAXATION AND CREEP STRENGTH OF PIPES SUBJECTED
70 COMPLEX STRESS STATES

By
S.A, Shesterikov, V.D, Kurov, G,P, Mel'nikov,
E,A, Myakotin and M,A,. Yumasheva

The operation of several elements of electric equipment [l] can be
characterized by the combined processes of creep and relaxation flowing
in different basic directions. One of the most characteristic forms of
such a strain is the condition of tubular elements subjected to the simul-
taneous action of the internal pressure and the given axial deformation.
It is clear that such a form of a complex stress state can be very easily
realized in experiments, Let us consider some features of this case, and
investigate the process of siress relaxation in a tube subjected to the
combined action of an internal pressure ¢ and a given axial deformation £,.
In the specimen, the following system of stresses will emerge 3

6, = 9a , 6,=0 , 6; =6, (t) , (1)
h

where @ is the tube radius, and h is the thickness, The axial stress

6, can be represented as the sum of two components
6} = 6'1,' + 6'22 (2)

where 6}4 is the stress caused by the pressure ¢, whereas 6}2 is
the stress arising as a result of the additional axial tension €;. The
deformation Ezo can be simulated as a thermoexpansion or oconstrained
deformation of tubes in a paket. It is evident that 1

Sz, = % (3)

The superposition of the two processes — creep in the oiréumferential
direction and relaxation in the axial direction (the stress in the radial
direction will be neglected, and it will be oonsidered that &, = 0),
will lead to a quasi-plane stress state., For the discussion of such a
stress-strain state it is necessary to select thoroughly (physically
uncontradictory) the equations of the theory of creep, describing the
processes of oreep under multi-axial stress conditions, As a basis,

let us take the equation of the flow theory [2] for a steady oreep 1

P‘d :szdf (4)
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where F£.. are the components of the tensor of creep deformations,

S;; are the components of the deviator of stresses, and JF is the
function of the invariants of the stresses tensor, It 1s assumed here
that the creep strain satisfies the condition of incompressibility, For
decreasing the transformations it could be assumed that the function;f
depends only on the second invariant of the stresses tensor (although

it can be shown that all the data given below are valid on the selection
of an another relationship for_f'and the use of other invariants),
Therefore, the axial component of deformation in the considered case can

be expressed in the following form 3

] 2 2

R=Ff(6; —-6;6, +6,)(26; —c5)/3 (5)
In equation (5), o, is a constant parametere Therefore in the case when

£r = B +(Ye) (65 — yeg) = const
we get from (5) an expression for &,

5, = —F£(s; 2 6)

6, = -£f(65 - 6,6, + 5'9)(262_58)/3 (
Initially, 6;(0) =6
Let us compare the relaxation curves described by equation (6), for the following
two cases a) on the existence of a pressure Q9 b) when Q = 0, Moreover,

assume that the initial stress 6, 1is the same in both cases, The equation
of 6, will then take the following forms 3

@) Gy = — £f(6;)26,/3 (forg=0) ;
(1)

(b) sz=-£f(e':-c'zc-9+<,~:)(zsz ~cg)/3 (for g#0)

Since &, > 6, /2 y then divide the whole zone of variation of &7
to three sections 3

1) 6, >0y 5

2) 6, >0 > 6@72 3

3 6g)2 > 6, .
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and consider that bf(:r:)/éx)O (i,e. the function f is steadily
increasing), Then, it will be clear that in the first zone the right
hand side of equation (6), for the case when ¢ is absent (further on we will
call this case "a"), is greater by its absolute value than for the case
when 9 O (this case will be denoted by ocase "b"), Since both relaxa-
tion processes begin from one level, then in this zone the curve of ocase
o' will lie below that of case "b", In the second zone it seems that
the intensity of the stresses for case “b" 1s greater than that for "a'".
This may lead to the fact that the relaxation curves begin to converge,
then they may intersect and, further on, curve "a'" can go higher than
curve "b" (see Fig, 1), But since curve "b" has a horizontal asymptote
of 6'2 = 6g /2, then if even such an intersection occurs it will imply
that further on an another intersection of both relaxation curves will
occur and curve "a" will necessarily go below curve "b" (the asymptote of
curve "a" is the time axis), All the above mentioned points are related

to the case when the relaxation process begins with 6, > 6g .

6,

When &, < 6g two cases are possible:either ourve "g" goes
above "b" or vice versa, The limiting conditions will be those where
both curves emerge from point &, with equal inclinations, In this
limiting condition, &, (0) of ocase "q" should coincide with é’z (0) of
case "b", Then, from (1,7) it follows that 3

f(6.)26, = f(67- .65 +62)(26,~6) (8)
where

6g >0, > %2

It is easy in certain cases to prove that equation (8) may or may not
have roots in the necessary rangs,
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For the case when the exponential relationship has the form
f(x)=x" (9)
equation (8) will have roots at 1

K3 K, = 2.4 (20)

Therefore, if K < K,, curve “o" will always lie below curve "b"
At X>K,, there are two values of 6, (6 (x) and 6. (k))dividing the zone
of the initial values of 6, into three zones (see Fig, 2), 4t 6,<s ,
curve "q" will always lie below curve “b", At 6, >6,>6,, curve "b" will
lie firstly below curve "a", then both curves will intersect each other
and curve “a" will diverge below curve "b", Ates, S5 4 the process will
be either as previously described (see Fig, l), or it may happen that both
curves may not intersect each other, Let us analyse in details this latter
case, JSince at 6, ><,-: (independent of whether o, 1is greater or smaller
than G ) a double intersection of curves "a" and "b" (see Fig, 1) may
take place, or no intersection may occur at ally then, the limiting case
may be that when A and B coincide, Thus, due to the smoothness of the
curves, there will be a tangency, i.e, the following condition will be
fulfilled :

f(G':)zéz=](6:—616946:)(281-69) 1 (11)

where 5'2. is the value of 6y corresponding to the moment of tangency
of the curves, Moreover, the times needed for the fulfilment of this
point for the compared processes will be equal, i,e, 3

6, .o o a6

| 9% . ’2 : (12)
3 2/(6:)62 ‘—5 (261-60 )./(61’6260‘63)

4 2
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Since even for a relationship of the type (9) the general case of equation (12)
could not be integrated in elementary functiions, a detailed analysis was
conducted by numerical methods on the digital computer "NAIRI", For the
given 6 (or ¢) it is possible from systems (11) and (12) to determine
6, as a function of the parameters included in f o For equation (9), the
relationship between ¢, and K is derived, It can be noted that in this
case, c’e enters in this relationship as a simple multiplier, i,e.

G, = GgVy (K)o Moreover, at K<Kl’ functions Yy do not exist, whereas at
K>K,, 6,>6,. The calculations have shown that &, increases with the
increase of K, The limiting value of K is determined from the condition
G,—®©, Then, instead of (11) and (12) we have the following system 1

2 et

2a =(2a-1)at-a+1)" (13)
—j dLI
e t™ -ﬁ, (2u-1)ut?-us 1) '

where the replacement G,=Gyu and 6‘z =6, 4 was made, & and K are
determined from (13), whlch we denote by K2. The calculations have also
shown that

ﬁ = 2.72 (14)

Consequently, at k> k,the case shown in Fig. 1 may take place at any o’o>o* At
K >k>k, 6“ can be always found, such that at e >6", curves "a" and "b"
would not intersect, whereas at c' > 6, >6 s & double intersection of
these curves may take place (as shown in Fig, 1), Therefore, c’,“\ is
determined from systems (11) and (12) at the given value of K, and corres-
ponds to the initial stress at which curve " " is always located below
curve “b", But the tangency of these curves is clear in one point,
Therefore, all the possibilities were investigated for a relationship
of the type (9)- A similar analysis was conducted when the maximum tensile
stress was considered as a determining factor, and it was proven that
all the above indicated features are valid, The conducted analysis has
revealed the basic features of the shells behaviour in the case of the
combined action of internal pressure and axial relaxation, It has also
allowed to estimate the variation of the stress state with respect to time
under such conditions of operation, and the stiudy of the creep sirength
on testing the sets of the Koffin type, The experimental investigations
conducted in the IVT laboratory on similar sets have proved the validity
of the obtained estimates, Moreover, these investigations have highly
improved the accuracy of the analysis of similar effects, studied in [1],
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A series of experiments was oonducted on a set of the Koffin's
type for the determination of the characteristics of the creep strength
under different conditions, Cyclic tests were conducted (with a base of
6 hours) on tubular specimens loaded internally by a constant pressure
under the conditions of axial relaxation., Let us consider a single method
for the estimation of accumulation of damage under the indicated conditions.
It will be assumed that the kinetic equation for the damage parameter «J,
written for the principal directions, has the following form :

Qe V¥ (6;,6,) (x:1,2,3) , (15)

where G, is the principal stresses and G; is the intensity.

Moreover, the relationship with 64 can have the character of the
relationship with a combination type of 6 +(6€,|

For the wuniaxial case and a constant stress, this equation leads
to the law of linear summation of damages In the conducted tests, the
specimen exists under the conditions of a plane stress varying with time
and from one cycle to another, For the determination of the simplest
value, it was assumed that the variation from one cycle to another can
be neglecteds A4ctually, as shown by experiments, the first two-three
cycles are only different. Furtiher on, a condition prevails when the
residual deformation becomes practically the same from cycle to another.
Since in the specimen, only &, and 6, are actually different from zero,
equation (15) can be written in the form 1

g 2AS[T 6T D,k A6 6, (16)

It is then possible to find an exact solution for equations (16). Inte-
grating equation (6) and substituting the parameter 6; =6 (t) , we get
AWy andA(,)z for one cycles It is also possidle by the use of the
experimental values of the parameters G, (t) to get similar values for
the damage increments,
k

g
'sl
ij

m m2
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Since for the first version it is necessary to know all the charac-—
teristics of creep, and since it is impossible to determine them due to
the insufficiency of the experimental material, then the second version
should be considered. From practice it follows that under the conditions
of the conducted experiments the relaxation curve can be represented in the
form shown in Fig. 3 for a steady oycle state. In the conducted series of
experiments, g, was varied, whereas the difference 6, = Cgp remained
constant since the same 6;0(0.9 « 1077 J, corresponding to the conditions
of the tests ( &, — %o/, =10 kg mmz), was giveny 6, was varied in the
experiments from 6,6 to 7,7 kg/mm o« Due to the insignificant variation
of the g curves, G, (t) proved to be similar for different values of Gg

The characteristic relaxation curves are represented in Fig, 3. These
curves are taken for a specimen with 6 = 7,1 kg/hm?. They indicate the
gradual acceleration of the relaxation process from one cycle to another,
and, consequently, the decrease of the stress intensity, Let us move to
the estimation of the obtained experimental data,

If we assume that for all the cycles of the tests there is a similar
relaxation process, as shown in Fig, 3, curve 3 (which is an evidence of
the decrease of the intensity of pressure), then the equation of relaxation
of the axial component 6, can be conditionally written in the form of

Z2
a displaced branch of a hyperbola

Cpp =(T + 0.1y"! where 04T g 6 (hour) (17

Then, at

. 2
T=0 g By = io K,g/mrn2 : T=6 , 635 = 0.16 Kg/mm

For the approximate determination of the stress intensity, the value of
the equivalent axial stress 5; is introduced, which is defined as the
average with respect to time

T
6';=% ][6:” + 625 (7)]dT (18)

For specimen No,8, for which 6, = 6,6 kg/mmz, we have 1
= 3.3 kg/me H
6" = 4.2 Kg/mm2

A
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For specimen No,11, for which 65 = 7,7 kg/me, we have 1

6= 3.85 Kg/mmg;
"
6'2 = &.56 Kg/mma;

6: =6.78 kg/mw‘l2 .

.) | S — _a_.J. ;__ k-
" & o s ¢[hour]
specdo  spec.8
Fi & 4

Let us compare all the obtained values with the data of the creep
strength determined under other conditions, 1In Fig, 4, a graph is
pPlotted in the logarithmic coordinates: the intensity of pressure and
log time, The straight line 1 corresponds to the tests carried out on
creep strength without pause, whereas line 2 corresponds to the tests
carried out with 6-hours cycles, If the experimental points are plotted on
this graph, taking 6: into consideration, as calculated from equation (18)
and from the obtained value of 6; , then the experimental points will lie
above line 1, If we consider that all the values are determined only by
the maximum tensile stress, i,e, in (16) n, = 0, then the experimental
results will be in good agreement with the straight line 2, The last
statement is in perfect coincidence with the results of the series of
experimental investigations previously conducted in the IVT laboratories
on the same material, Those last investigations have shown thet the
criterion of maximum tensile stress is determinant in the estimation of
the creep strength under complex stress states.
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THE RELATIONSHIP BETWEEN THE LIFE OF MATERIAL
AND THE LEVEL OF CREEP STRESSES IN THE CASE
OF COMBINED LOADING

By
G.A, Tulyakov, G,I, Mel'nikov and Yu,D, Starostin

The investigation of the life of material under the conditions of
combined aotion of thermocycling and creep, has shown that the service
life of the material is determined by the sequence of application of
different groups of loads, prehistory of loading (duration of the previous
stages of loading) and, to a large extent, by the level of creep siress
(1,21

Ads a result of the study of the processes of accumulation of the
damages and failure of austenitic steel (Khl8N1OT), two principally
different zones varying with the level of static loading were established [3].
Under low stresses, i,e, relatively long duration of the experiment, the
most intensive process of accumulation of the damages produced from
thermocycling and static loading was observed, This process is "located"
mainly along the grain boundaries, As a result, a significant decrease
of the absolute as well as the relative 1ife of the material occurs
independent of the sequence of application of loads,

Under high stresses an intensive strain hardening takes place inside
the grains due to thermocyclic deformation and the accumulation of damages
inside the grains, as well as along their boundaries (due to creep), In
this case no actual accumulation of damages occurs since, as shown by
metallurgical researches, an intrograin failure is basically produced,

As a result, a remarkable increase of the relative as well as the absolute
life of the metal is observed under the conditions of initial thermooycling
due to the strain-hardening processes,

Proceeding from the date of the indicated works and from the results
of investigation ef the mechanisms of accumulation of damages in the
siructural material it is possible to assume that the relationship be tween
the 1life of the material in combined loading and creep stress should have
extreme values corresponding to the maximum and minimum life capacity,

The correctness of the above stated assumption can be also checked
on a family of curves, described by equation (1) [2]:

A-N+T=1¢{Zafr-(F-%)"] (1)
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If the left hand side of equation'(l) is expressed as a function of creep
stress, the graph of the family of curves will acquire the shape shown

in Fig. 1, independent of the sequence of application of loads and their
relative magnitudes,

In the general case the family of such curves can be described by
the following relationships

o A :
Fls)=K-6%[s-G | -,6-6211'-s;gn{(é-é’)(é-éz)}oI (2)
where 6, and 6, are the roots of equation (2), and
Ky «y Band Y are cons tants,

In certain cases, equation (2) (of curve (a) shown in Fig, 1) can
be represented in the form of a family of iwo equations at a relative
initial creep of 7 = 0,43 1
fore £ 16

Flo)=2,22-107" 6" %616 sgn(-16)s1 )

for6 > 16
F(6)=-1,105-10""6- 16!"'516"*21_5 signf(6-16)(6-42)} « 1 (4)

Curve (b) (see Fig, 1), with a preliminary relative number of & = 0,57
for the initial thermocycles, can be desoribed by the following systems
fore£15

F(6)=1,0110°.6" [6-15]" sign(6-15)+1 ; (5)
for6>15
F(6)=-162-10"6- ,5,'-"’5, lé_azlw- sign {(6- 15)(6-42)} + 1 (6)

It is therefore clear that a significant increase in the relative life

of the material corresponds to a relatively high level of creep stress
exceeding the yield limit of Kh18N1OT steel at the given temperature

(the test temperature was 600°C), This increase in the 1ife of the
material is, as stated above, due to the processes of intrograin thermo-
cyclic strain-hardening, This is the reason why such an increase is most
clearly revealed under the conditions of initial thermooycling,
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For creep stresses lying in the range of 8-12 kg/mmz, which is
very close to the stress level of many elements operating under steady
power machinery, & minimum relative life is observed, which is slightly
dependent on the sequence of application of thermocyclic and static
loadss The least life capacity of the material in this zone is condi-
tioned by the processes of intensive actual accumulation of damages,

F(e)

il //v\\\\b
~
\\
///"\\\\n ~

{ ﬁ‘\::“.—{/ -

Fig, 1

Graph of the relationship between the life of the material in combined
loading F(6 ) and the level of creep stresses 6 i1 a- is the value of
initial loading at a relative initial creep of T = 0.47 (- = experimental
results); b - is the value of initial loading by thermocycling, N = 0,57
(o = experimental results),
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ABOUT ONE METHOD OF ESTIMATION OF LONGEVITY IN THE
CASE OF THE COMBINED ACTION OF CREEP AND THERMAL
FATIGUE

By
G.As Tulyakov, Yu,D, Starostin and G,P, Mel'nikov

A method was previously suggested for the estimation of 1life of
elements and aggregates of power machinery operating under the conditions
of creep and small thermocyclioc fatigue[ 1]. This method is based on
the summation of relative lives, using the general form of linear law,
expressed by the following relationship 1

M T

L 4+ L =1 1

e T T (1)
where N; 1s the number of cycles in the experiment ;

Nep is the number of cycles leading to damages;
T: is the creep time in the experiment;
and T;p 1s the failure time,

At the same time, the results of some works[ 2,3,4] have shown that the
data obtained from the experiments on oreep and small cycle thermo-
mechanical fatigue are highly different from linear summation, If the
right hand side of equation (1) is denoted by the parameter of life ¥A",
the results of the above mentioned experiments can be expressed as A>1,
in the case of stirainhardening of the material, and as A<1l, in the case
of its softening (with respect to linear summation),

An investigation of some aspects of life in the case of combined
action of static and thermocyclio loading is illustrated below,

The analysis of the experimental results [3,5] has shown that the
process of development of damage is highly dependent on the amplitude
level of the thermocyclic and static stresses, as well as the sequence
of their application, It follows, therefore, that the graph of life

performance, expressed by the relative coordinates N = F/A'/" and T= %i- ’
ip p

can be approximated in the form of a family of curves, symmetrically
located on both sides of the straight line, for which (in certain cases)
the law of linear summation (1) is valid,

In the general case, the equation of life for the complex action of
thermal fatigue and creep can be represented as a family of parabolas 3

N+T=dsaVa[1-(N-F)] (2)
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a

where 0g |xl< -2-2- is the coefficient of summation characterizing
the degree of deviation of the relative life obtained from the linear
law under the conditions of strain hardening and softening of the
material, The value of this coefficient depends basically on the
sequence of application of different types of loads, as well as on the
level of stresses and the material, At a« =0, the family of curves
converge to an equation of the type (1),

The applied relationship of life was experimentally checked on thin-
walled tubular specimens (d14xl) of Khl8N1OT steel in the case of coin-
oidence of the lines of action of the principal stresses arising due to
static and thermocyclic loading, The program of loading of the specimens
wvas as follows :

1, Initial thermocycling, given the number of cycles in the interval
(0,1 —0,9) N,. then static deformation up to failure,

Table
S E;D—;"—;.;‘;_;“ -@ﬁﬁﬁop— spareTp @
AN A 1 ARTH - .
@ Pe AHe KON3y~| MamHE [“Aoroseg.. KoSpdmme~,
Bra wporpass~ ~e3:&»£ gecTH 6 3a HOCTH GRT Cym-
Mt pemmra- | FOXH kr/moat mexn ey | MEPORANER
HMA *) Ae A P x
%
1 1 24 0,75 1.4 -
2 18 1,2 1,7 -
3 18 0,75 1,6 -
W-\j:iej 4 14 1,2 1,21 |+0,23
5 14 0,75 1,02 0,0
6 10 0,76 0,88 -0,12
] 7 18 0,76 1,2 +0,17
fom e A 8 14 0,75 0,82 |-0,18 '
2] 10 0,78 0,78 -0,20 '
) i
m 10 14 0,75 0,4 ~0,14 !
- \J

Notes:
*) In each case, different versions of specimens (9-16 specimens)

were tested for the given number of thermocycles (Ng) or creep time (Tp)
*%) This parameter was determined as the arithmetic average of all

the tested specimens.
Key: 1- Form of the test program; 2- Number of case; 3~ Creep stress (&);

e
kg/mm2; L= Deformation for one cycle (Ae), %; 5~ Life parameter (Ayy);
6~ Coefficient of summation.
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2. Deformation under static loading, given the duration of aprlica-
tion of load in the interval (0.1 = O.BS)GP then thermocycling up to
failure.

3. Interchangeable application of thermocycling and static loading.

The conditions of testing under stresses and strains are given in
the previous Table o

The staic deformation was conducted under constant_loading and a
temperature of 600°C in the stress range of 10-24 kg/mn“, The thermal
fatigue was tested by heating a rigidly-fizxed tubular specimen (the
coefficient of rigidity is 4.6) by a current of industrial frequency and
its cooling by compressed air, introduced in the internal cavity, with
a zigzag cycle of temperature variation, The upper cycle temperature
was constant (600°C), whereas the lower one was varied within the range
of 100-300°C to provide_ the fgilure of the specimens in the zone of the
small cycle fatigue (10~ = 10 cycles), In this case the deformation
parameters of the cycle (in the calculated elastoplastic deformations)
were used as principal parameters,

The analysis of the results of the combined tests in all the three
programs is shown in Fig, 1 in the form of life diagrams, These diagrams
indicate that in the general case the summation of the relative lines does
not follow the linear law,

The magnitude of the parameter of relative life varies widely in
accordance with the test conditions (see the Table), In all the cases
a drop in the relative life is observed with the decrease of the loading
parameters of the tests (creep stresses and amplitudes of thermocycles),
In the case of equal values of loading parameters (oases No, 5, 8 and 10)
the test cases with initial creep lead most dangerously to the utmost drop
of relative life, The life in the case of tests with interchangeable
application of static and cyclic loading occupies an intermediate position,
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The effect of the sequence of application of different loads
(static and thermocyclic) is very clearly shown in the case of high
values of test parameters, and less clearly pronounced with low values
of these parameters,

The experimental results have shown that in the range of static
loads below the thermal limit of steel yielding at 600°C, i,e, under the
conditions when the creep process is actually realized, they are
satisfactorily described by equation (2) with a deviation not exceeding
15, In this case it is observed that the damages produced from creep
and thermal fatigue are summed up, This process proceeds in the case
of sirainhardening and softening as compared with the linear law,

Under the conditions of creep of initially thermocycled specimens
(the 1st prq;ram, cases No, 1, 2 and 3), for static load stresses of
6>18 kg/mm y the experimental results cannot be described by equation
(2) due to the intensive strainhardening by thermocycling (increase of
the absolute life) ocouring basically inside the greins,
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ABOUT THE UTILIZATION OF SAN-VENAN'S CRITERION FOR
THE ESTIMATION OF LIFE IN THE CASE OF THERMAL FATIGUE
UNDER THE CONDITIONS OF COMPLEX LOADING

By
GeAe Tulyakov and V,A, Metel'kov

In TsNIITMASh, some tests were conducted on austenitic steel
(Knl8NM10T) for the investigation of thermal fatigue under tension and
conpression when the deformations are given at a constant ratio of the
angular and axial components, The tests were conducted on specially-
prepared e%Bipment (1]. The ratios are as follows 1

A N ’
R, = '—zygfi- -~ (tension and compression), 0.7, 1,0, 1,5, 2.0, 5,0
and © - (pure shear),

The failure criterion was taken as the number of cycles up to the
formation of the first macrograde, In the case when the parameters are
given in the range of 650 -~ 150°C the failure takes place in the range

2 I3
of 2x100—2x10 oycles.
During testing the diagrams of thermocyclic deformation were recorded.

The_fbtained experimental data [2] on thermal fatigue at different
[a} y

e = Ag; ratios have allowed to plot the relationship between the
number of cycles and damage  in the form of paired functions on the
variation of the axial and angular deformations for one cycle (see Fig, 1),
which are approximated (in logarithmic coordinates) the straight lines

and which can be described by the following equations 3

K
AexN ! _— C( L] (l)
K
aT N = C, (2)
where K_, K C, and C are constants,

1 1 2
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Curves of the variation of stresses in one cycle with respect to the
number of thermocycles,

1+ tension (compression), R, = Oy 2- torsion, R, = 5,03

3~ tension (compression), R, = 5,03 4- pure shear, R, = oo,

Fig, 2 shows the variation of normal and tangential stresses in one
cycle at different values of R,, It is clear that after the lapse of a
certain number of cycles (3~10% of that corresponding to failure) the
stresses are stabilized and remain practically constant up to damage,
whereas the values of the observed cyclic strainhardening along the
tangential and normal directions are of the same order of magnitude
(~~9-16%).

Consequently, if we pay atiention to the fact that the curves in Fig,1l
are practically parallel, it can be oconsidered that the mechanism of
plastic deformation is similar for the investigated cases and that in the
course of the experiment the ratio 47, /66, (taken for the extreme
points) will remain constant, This will permit to plot a generalized
curve for the thermal fatigue using as a criterion for strength any para-
meter of the stress—sirain state in accordance with the adopted hypothesis,

Since the failure in thermal fatigue is a proocess of accumulation
and development of plastiic deformations, then it is natural to assume that
the most convenient criteria are the generalized conditions of San-Venan

and Mises,
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Diagram of the limiting amplitudes of thermocyclic deformationsj
e — experimental poinig, l- curve calculated according to the
equation Aeiq. = .Deri +%Afxy y 2&- curve calculated according
to Odingy 3 - curve calculated according to San-Venany 4- curve
calculated according to Mises,

Fig, 3 shows the diagrams of the limiting amplitudes of deformations
for the 1000 and 5000 cycles before failure, It is clear that the
experimental data are near to an ellipse corresponding to San-Venan's
oconditions This confirms the known proposition [3,4] that in the case
of developed plastioc deformations San-Venan's condition describes the
experiment better than Mises's condition,

However, by examination of Fig, 3 it can be noted that there is no
full correspondance of San-Venan's condition to the experiment for the
determined values of the coefficient of deformation, This is apparently
explained, first of all by the fact that in the process of thermocyclic
deformation the initial properties of the material will vary, i.e, in
each A, cycle we have a material whose physicomechanical properties
differ from the properties of the material in the Nk.4 cycle, A metallo-
graphic research work was conducted for illucidation of the possibility
of activation of the new processes in the case of variation of the type
of the stress state in the structure of the material, The results of
this work have proved the absence of any processes different from those
observed in the case of a linear uniaxial stress state,

Apparently, such factors ass the anisotropy of material in micro-
volumes (it was not observed in macrovolumes), the locality of flow of



—103_

the processes of plastic deformation, and the noncoincidence of the
principal axes of stresses and principal deformations, have an influence
on the character of flow of the process of plastic deformation under

the conditions of complex siresses and thermal fatigue, as well as on
the experimental resul ts.

Consequently, for a more precise estimate of the criteria of
thermal-fatigue failure in the case of a plane stiress state, a parameter
taking into consideration the behaviour of the material in the process
of thermocyclic deformation should be included.

In his time, Oding [5] suggested to correct San-Venan's condition
by the corresponding coefficients for the consideration of structural
factors and the nonhomogeneity of distribution of stresses related with
theme These coefficients take into consideration the different effects
produced by the action of the tangential stresses.

The utilization of Oding's theory, transformed in deformation, did
not produce the required effect (see Fig, 3). The observed deviation is
apparently due to the nonhomogeneity of the flow of plastio deformation,
as well as to the strainhardening of the material in the process of
"complete deformation®,

Taking into consideration the last factor, the condition of strength
can be written in the following form 1

2 A 2 2
Aeeq’ = D'Aex +% ATX"’ s (3)
where
Y-
208e,, (1+R)
txﬁuy and ae,, are deformations in the case of limited (by the number

of cycles) ranges of fatigue, corresponding to the case of pure shear as
well as to tension and compression; Q is the relative value of strain-
hardening (in our casehH=0,12),

As shown in Fig, 3, the corrected curve obtained by calculation, coincides
quite well with the experiment, This allows to utilize the sugges ted
criterion for the calculation of the life of material in the case of
thermal fatigue under the conditions of complex stresses according to

the following equation 3

(4)

K
Ae ‘x/\/’_—_C

€q 3 ?

where Ae%q_is determined from equation (3), and K,and C,are constants ,
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It was shown experimentally that for Kh18N1OT steel, in the case
of a maximum cycle temperature of 650°C, the values of the constants

in equation (4) are K3 = 0,34 and 03 = 8.7,

=
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ABOUT ONE POSSIBILITY FOR THE DESCRIPTION_OF THE
LAWS OF CREEP

By
I,I, Trunin

It was previously shown [1-3} that, from the mathematical point
of view, many relationships obtained in the analysis of various physical
models of development of plastic deformations and failure under the
conditions of creep [4-6], are particular cases of one equation, which
for ithe minimum oreep rate and failure time can be correspondingly
represented in the following form 3

. -2 _n u,- 76,
ExBT 6, exp[-—kr ] , (1)
T -m ”o'f"do 2
Tx=AT é, exp[ pg ] . ( )
where £ is the minimum or average creep ratej T, 1is the time

of failurey T is the absolute temperature; R is the gas constant;
6, is the nominal stressy 4, B, my n,¥y,ft, H, and U, are para-
meters characterizing the individual features of the material.

Usually, the creep tesis, particularly on complex heat-resistant
alloys and steel, are conducted under a constant load. Consequently, in
utilization of &, in equations (1) and (2) it is necessary to take into
consideration the variation of the cross sectional area F, due to creep
deformation.

The even plastic strain € leads to the decrease of £ and, conse-

quently, to the increase of s, by e times.

G =6, e (3)

The effect of plastic strain on the rate of creep is not limited
by the increase of nominal stressess: the plastic deformation leads to
strainhardening as well as to softening, and stimulates the development
of failure,

The resul tant value of plastic deformation consists of an active
component arising in the specimen with the application of load, (Eo) and
a passive component induced in the process of creep (Ep)



- 106 -

Each of the componentis of plastic deformation can influence the develop-
ment of creep [ 4] in many ways, i.e. it is convenient to express the role
of each part in terms of independent parameters,

The resultant influence of the factors of softening and the develop-
ment of damages can be represented by the introduction of a constant
parameter ", in equation (3).

6 =6,e"" (4)

Inreference [4] it was shown that the effect of the strainhardening factors
can be very precisely represented by the introduction of a term of the

form €&~ in the equation of creep rate,

Therefore, the equation of the type (1), in which the creep rate in
the yield point of the curve (see Fig, 1) is introduced instead of the
minimum rate, can be represented in the following form

. .2 o ..
E=B8T 6 (e, +¢, ) explnic +we, )]

} . (5)
cexp [ ] e [EF esple, e, )]

Equation (5) is one of the possible forms of the equation of state[4] .
The parameters of this equation reflect the influence of the basic factors
determining the physical laws of the process:

, rTepresents the effective activatiion energy of creep occurring
in the macrovolumes of the material, B 1is the parameter representing
the effect of interatomic distance, period of thermal vibratiions of atoms
and entropy of state [7, 8, 9, 10], 7 is the activation volume of the
creep process in the macrovolumes of the material, « is a parameter
representing the resultant effect of strainhardening factors, w is a
parameter representing the resultant influence of the softening factors
and the development of miorodamages.

~Strain

f——— et e

Time

Fig. 1

——

Initial creep curve at T = const and &, = const,



- 107 -

The results of the creep tests (each point is determined by
Ty 6oy €y g, and £, ) were mathematically treated in some range of
temperatures and stresses, Therefore, the optimum values of the six
parameters of equation (5) were obtained, This equation characterizes
the siructural condition, and represents statistically the role of the
basic micromechanisms in the development of plastic deformation and
damages in the macrovolumes of the material,

The experimental data providing the determination of the values of
coefficients were treated by the method of least squares using a digital
computer,

By getting the value of the six parameters of equation (5) it will
be possible to describe the creep process in all its stages, Integrating
equation (5) at T = const, 6, = const and &, = const, we get an expression
for the determination of time, in the course of which the creep deformation
attains a value of ¢

1 2 .n u J‘G .
T = —~° _ _v e
¢e=8 Ts, exp[RT e, e exp (€, )] p

(6)

¢
X !(Co¢ep)exp{-[% exp(wép) -nw£p]] de

It is possible to conduct the necessary calculations for plotting the
initial creep curves by the method of numerical integration using the
digital computer,

Processing and analysing the results of testing perlitic as well as
austenitio steels has shown thait the values of the parameters of equation
(5), determined according to the elaborated program, represent, to a
sufficient degree of accuracy, the laws of creep.

I I

[ .

1 H 30 S heur

Fig. 2

—_— 2
Initial creep curves: 1S5KhIMIF steel, t ot ° 540°C and G, = 32 kg/mm",
—experimental curves, —--— calculated curve,
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Initial creep curves: 15KhIMF steel, t = 5659C and 6, = 20 kg/mmz,
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Fig. 4

Initial creep curves: 1S5KhIMIF steel, t

et = 5859C and e, = 24 kg/mmz,
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Initial creep curves: 15KhIMIF steel, t = 5859C and & = 20 kg/mm2,
test ©
—— experimental curves, ——- calculated curve,

For example, the experimental oreep ourves of steel of the perlitic
type (mark 15KhIMIF) are shown in Fig, 2-5, The tests were conducted at
three levels of temperature, and 3-4 specimens were tested in each case
(at T = const and &, = const),

The parameters of equation (5) were determined from the results of
the tests at the following four temperatures: 540, 565, 585 and 610°C,
In Fig, 2-5, the solid lines represent the experimental creep curves,
whereas the dotted lines represent the corresponding calculated curves,
plotted according to the following equation

€ = exp (12,92)7"2 6:'35 (£,+¢, j“ exp [6,.35 (6,475 £, )].

:exp Ej;g)exp[%éo exp(£°47,5ép)] .

The data in Fig, 2-5 allow to note that in all the cases the calculated
curves represent, to a sufficient degree of accuracy, the development of
fatigue in all the stages of the process,

Consequently, it is possible, in a certain range of temperatures and
stresses to utilize the constant values of the parameters of equation (5)
for the description of the creep process,

If the parameters of equation (5) are separately determined for
different stages of creep, it will be possible to obtain additional infor-
mation about the accumulation of damages and activation energy in the
different stages of creeps
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Assuming in equation (6) that € =€, (the creep deformation prior
to failure), it will be possible to determine the corresponding life
( tk). In utilization of equation (2) it is implicitly assumed that the
value of plastic deformation in failure is constant, The deviation of
the individual values of ¢, from the mean values is often insignificant,
Therefore, by the aid of equations (1) and (2), it is possible to obtain
quite reliable estimates, In those cases, when the indicated condition
is not fulfilled (for example, the value of EK decreaseg with the
increase of service life and decrease of &, ), equation (2) can give a
low estimate of the mean life, i,e, the factor of safety is increased.
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THE EFFECT OF THE STRUCTURE OF MATERIAL ON CREEP STRENGTH

By
V.D, Kurov, G,P, Mel'nikov and A,A, Sokolov

One of the possible methods of description of life under the condi-
tions of creep consists in the introduction of the parameters of state
when a certain relationship is drawn between temperature, initial grain
size in the structure of the material, level of stresses and failure time

i~#<6i.d) (1)

In the TsNIITMASh, investigations were conducted for the determination
of the creep strength of Khl8N12T steel under steady state conditions
and different grain sizes in the temperature range of 600-650°C [1],
The average experimental results are given in Table 1 , '

For the estimation of the material and solution of the optimization
problem, let us utilize the method of statistical planning of the experi-
ments, The use of progressive analysis in the treatment of the results
allows to determine the extreme values of the parameters of the process
model, For establishing the plane, the curves of creep strength, extra-
polated from the data included in Table 1, were used.

Moreover, the results of the creep sirength experiments were intro-
ducede These experiments were conducted under variable tempsrature-loading
conditions on tubular specimens of Khl8N10T steel with different initial
structure, 3

The faotorial experiment 2° [ 2] lies in the foundation of the utilized
me thod of statistical planning, i.e., three parameters are varied on 2levels
of each ,

temperature :+ t = 600 and 650°C,

stress t 6= 20 and 24 kg/mm

grain size according to GOST No. ¢ d = 7-6 and 3-2,

In the factorial space, the variables are replaced in the following
form 3

K o '?.J*'ljo

YooAy 7 (2)
where X; is the coordinates of the experimental points in the new
systemy
23 is the initial coordinates corresponding to the natural values
of the parametersy
is the basic level of the factory
Ay is the interval of variation,
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2
Key: 1~ Test temperature, t°C; 2- Stress, G kg/mm ;

Table 1
@TeM—pa @ Hanpsaxenwe [ Benwwanma sepua, [HBpems paspywe—
ucnbl['rm{. 6 xr/mm’ d,Gann TOCT HAR T , uac
to
178
7-6 208
124
796
24 4 -5 1001
679
3 -2 712
156
T-6 158
26 4 -5 743
654
3 - 2 1258
1300
45
7 - 8 74
340
28 4 - 3 461
351
3 -2 536
679
T- 8 503
673
16 4 - 5 925
460
3 - 2 1100
161 j
T-8 242
504
850 18 4 - & 569
479
3 -2 618
7 - 8 70
08
127
20 4 - 5 295
162
3 -2 207

3y 3- Crain size,

according to GOST Noj 4- Time of failure T , hours,
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As a resulti, we have :
for the temperature

X‘ =___#._t"625 3 (3)
25
for the stress
X, = ﬂ%gl (4)
for the grain size
X3 = d-5 (5)
2

The obtained values of the new variables have the property of orthogo-
nality, and are represented in a matrix form in Table 2,

If the symbols of the new parameters indicate the transformed values
of the initial parameters, the following regression equation will be
obtained :

Y‘E)o*P"X"'baXt*baxs"t’u’w* Bgrs* Baxs*&v*v (6)

where the values of the coefficients of equation (6) are determined from
the following equation 1

sz v ! (1)

where m is the number of experimental points;
J is the number of variables in the regression equation,

From the solution of equation(7) and transformation of equation(6) , the
regression equation can be converted to the following final form:

Yeals = Tocan= 788~ 687x, - 533 %, +457x, (8)

b HOExX, - 324K Xy 7K X+ BOHR XXy

For the investigation of the surface of equation (8) it is necessary to
solve the system of nonhomogeneous equations 1

K81 X,- BT+ 304X, X, = 687
BOix, - 320x,+ 304 % x,= 539 (9)
- 321x2~ 1‘17XJ+ SOMX(X,_:’ h:‘)?
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The solution of system (9) gives the values of the unknowns corresponding
to the least life 1

which denotes that t = 640,59C; 6 = 25 kg/mmz; d = 8,5 on the GOST
scale,

For checking the influence of the structural state of the material of
construction on creep sirength under the conditions of varying the duty
of the type "starting-stoppage" [3], tests were conducted on tubular
specimens (36 x 1,0), made of Khl18N10OT steel, under an internal pressure
and a temperature of 750°C, The tests were conducted on specimens with
an initial structural material corresponding to the 6-7 state of delivery
on the GOST scale and heat-treated in vacuum (10 mm mercury column) at a
temperature of 11009C in the course of 2 hours, which corresponded, as

a result, to a structure with a grain size of 4.

20
6 B
el TTsSssl L TR L]
] &5\4\ — 7';'\1r—‘\.-w, Y
P
Hn ] R Sy i S X
}- e —— - - —— ‘\..\z
[ 1 - - jy et W
4
] 10 n € hour X
Fig. 1

e —

Creep strength curves: 1l- steady duty, heat-~treated specimensj 1- variable
duty in the course of 6 hoursy 2- steady duty, untreated specimensj 2'- variable

duty in the course of 6 hours,

For each pair of the obtained curves (see Fig, 1) it is possible to
derive a relationship for life in the case of a variable duty

Nn,-n
Tvar = const(§L> v (10)

where 6, 1s the level of stiress corresponding to the point of inter-

section of the curves of steady and variable cases of loading,

n, and n, are constanis characterizing the inclination of the curves of
creep strength,
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The comparison of the experimental results have shown that the life
of specimens with large-grein structure significantly increases, 4 con-
dition of the type "starting-stoppage", decreases the service life of the
material as compared with the steady duty case, The angle of deviation
of the curves of creep sirength for specimens with an initial structure
of the material (6~7 on the GOST scale) is larger than for the heat-
treated specimens, This shows the low performance capacity of the cons-
truction material with a small grain size, This is clear from the graph
and the following relationships 1@

o 6 \ 006
T‘vn\- Tmns\,x (_5.,_,)
0.18% (11 )

Tvar™ Tegnst ‘(%o-z) _

where the first equation corresponds to curve 1', whereas the second
one corresponds to curve 2!,
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THE E¥FFECT OF HYDROSTATIC COMPRESSION ON POROUS MATEHIALS

By
A, M, Lokoshchenko and E,A, Myakotin

The analysis of the process of packing of different media has been
the subject of the study in many works [1—3]. In these works, experimental
investigations were basically conducted, where the specimens were loaded
in a closed space by a moving piston, or in an elastic shell by hydrostatioc
compression, The last method has proved to be extremely effective, in
particular, for the increase of the strength of cement stone [4], namely,
in the case when its initial porosity is very high,

Different emperical formulae were suggested for the description of
the relationship between the density of pressing § and the magnitude of
pressure, The following are the most reliable formulae 3

\9=9max‘Bedp[2] or 9"91:%’%% ‘5} (l)
A theoretical model of the process of packing of a porous material
(the initial porosity may be tens of hundredths) is described below,
This model allows to draw the relationship between a certain density para-
meter of the system and the external hydrostatic pressure, It is con-
venient to use the relative density % (i,e., the ratio of the volume of
the s0lid phase to the overall volume) as the density parameter,

The model is based on the assumption of correct packing of equal
isotropic incompressible balls of very small radii, and of the indepen-
dence of the density of packing of the form of the boundary surface, The
simple cubic and pyramidal forms are considered, These forms, which are
known systems of regular packing of equal balls, are supposed to have
limiting values of density [5]; thelr relative density is v, ,.= 9}/6;:0.52
and Ypr = 5/3 {220, 14, respectively, If on the surface, Iimiting the
system of balls, a hydrostatic pressure p is applied, then contact forces
N will be exerted between the balls. From the condition of symmetry,
these forces should be equal 1o each other and should be directed along
the lines of centres. Contact areas are formed around the initial points
of contact as a result of these forces, In addition, these areas are
located in planes perpendicular to the centres lines, and represent
circles with radiia, A4s in [6] it will be considered that apart from
the contact areas the surface of the spheres will maintain its spherical
form, Therefore, as a result of deformation, each ball with an initial
radius R, will acquire a spherical form of a radius R> R, , with a number
of n "cut" spherical segments equal to the number of contacts (for cubic
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packing, n = 6, and for pyramidal packing, n = 12)., Pigs.l and 2 show
the elementary cells out from the corresponding cubic and pyramidal
packages,

From the condition of incompressibility of the balls material it is
possible to draw the relationship between the current ball radius and
the dimensions of the contact areas, Denoting the volume of the ball
segment by V, the condition of incompressibility can be expressed in the
following form 1

I 3
%SIRB-HV="53(R° . (2)

By analysing the elementary cells it is possible to calculate the

relative density after deformation, Taking into consideration the con-
dition of incompressibility (2), it is possible to determine the relation-
ship between the relative density of the system and the degree of defor-
mability of each ball element, Let us denote the degree of deformability
by A = a/R (@ = the radius of the contact area and R = the radius of the
ball element), Accordingly, we get

. 45 2 -

T TR TR (31)
2 9 ]

Sor TROERMETS (3")

there and further on, the case of cubic packing will be denoted by (’),
whereas that of pyramidal packing will be denoted by (’’),

14
P
{
e
. Q‘__ p :?
X
' ' b
g
/p/l._._,_zﬁﬁﬁ)_-._l
Fig, 1 | Fig, 2
Elementary cell of cubic packing Elementary cell of pyramidal packing
in the process of deformation by in the process of deformation by

hydrostatic compression, hydrostatic compression,
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The relationship beiween the hydrostatic pressure p, the contact
force /V and the parameter A is derived from the condition of equilibrium
of elementary cells

N=LpR? WA (41)

N={2pRI(L-AY) . (4")

Each of the systems (3') - (4') and (3") - (4") will be closed if it is
suplimented by the relationship between the contact force N and the geo-
metric parameter A+ This relationship is determined by the type of the
stress-strain diagram of the balls material, Let us assume that the
diagram has the form of an "elastic-ideal plasticity", Moreover, we
may neglect the elastic deformations in the plastic zone, '

For the zone of elastic deformation we may assume,as a first approxi-
mation, that for each ocontact area the relationship between its radius o
and the contact force # follows the relationship of Herz [7]

2
O,3=9NR s 0 = —__—)—_3(414-EV b (5)

where © is a property characteristio of the material, determined by
Young modulus (E) and Poisson's coefficient (V) (since it is assumed
that the balls material is incompressible, then JV = 0.5).

Let us introduce the dimensionless pressure parameter @ = p©@ and
determine the relative density o as a function of ¢, For this purpose,
we get from equation (5) :

N:.-&;Aa_ (6)

Solving equation (6) together with equations (4') and (4") we get @

3
-4 _A (7')
W h {-A
:..i_. Aa (7")
9 2 1-A

The pairs of equations (3') - (7') and (3") - (7") transform the relation-
ship between the relative density & and the dimensionless pressure ¢,
for the cubic and pyramidal packages in the case of ideally elastic balls,
into a parametric form,

For an ideally plastic mzterial it is assumed that the contact force
is proportional to the contact area

N:Ki’fa‘ y . (8)
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where K 1is a constant characterizing the resistance of the ball material
to plastic deformation, Such a hypothesis is based, to a certain extent,
on the solution of Prandtel's problem [BJ about the pressing of a flat
stamp into a plastic medium, where K (the yield limit) = (2 +9, )X .
Moreover, the elastoplastic contact of spherical elements was analysed
in reference[9]. It was stated that in the case of very high contact stresses,
when almost the whole contact area is occupied by the zone of plastic
flow, the magnitude of deformation is proportional to the contact force
which is similar to (8), In [10], the results of the experimental investi-
gation of large local elastoplastic deformations are given for the case
of axial compression of a bar with a spherical end by a rigid plate, The
relationship between the value of deformationh and the compressive force N
determined in the statistical tests, is approximated by the equation
h = kN", For duraluminium specimens a value of n = 1,15 was obtained,
i,es, a value very close to unity, which is also in accordance with (8).

Let us introduce a dimensionless parameter characteristic of the

material

D=—ts (9)

Taking (9) into consideration, equation (8) will acquire the following
form

N=_3 & (10)
Do

In accordance with the previously mentioned assumptions, the relationship
between A and g was obtained for ideally plastic material§ by solving
equation (10) together with each of the equations (4) and (4 ) «

2

A -5 11')
A 4 Dq (

A "
_T:?_szDq (1)

The pairs of the equations (11'), (3') and (11"), (3") transform the
relationship between >and ¢, for the cubic and pyramidal packages in
the case of ideally plastic balls, into a parametiric form, However, we
have in this case, as distinguished from the case of elastic balls, the
possibility of deriving this relationship in a clear form, Excluding

A, we get 1 - -
9y = KHAHDY) -2 (LB DE)2-15, (12')

mp,ug(uﬁnq)-s(M‘EDQ?’Z-5 . (12")
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Theoretical curves showing the relationship between the relative density
2* and the dimensionless hydrostatic pressure ¢, For cubic packing

1- balls of an ideally elastic material, 2- balls of an ideally plastic
materialy for pyramidal packing : 3~ balls of an ideally selastic material,
4- balls of an ideally plastic material,

The results of calculation of the process of packing of cubic and
pyramidal forms are graphically represented in Fig, 3, Curve 1 denotes
cubic packing of ideally elastic spheres, and curve 2 denotes the same
but for ideally plastic spheres (for the parameter D = 2), It is clear
that for ideally elastoplastic spheres the initial part of the actual
curve will practically coincide with curve 1, whereas in the zone of high
densities, it will coincide with curve 2 at the corresponding value of
the parameter D, For the case of pyramidal packing the corresponding
curves are denoted by the following numbers ¢ 3- ideally elastic ballsy
4- ideally plastic balls (for D = 2,5)., The asterisks on the curves
denote the points corresponding ito the moment when the neighbouring
contact areas on one ball coincide with each other, DBeyond these points,
the curves are devoid of any physical meaning, since the initial relation-
ships are violated, It would have been possible to take into consideration
the change of the form of the contact area and sxtend the obtained curves
in the zone of higher densities, But since the obtained limiting points
correspond to 2+=0,96 4 this will denote practically the attainment
of a zero porositys therefore, there will be no need for any further
analysis,

The effect of hydrostatic compression on a porous material was
experimentally investigated on a test rig, in the operating chamber of
which it is possible to create and maintain a hydraulic pressure of up to
1000 kg/cm2 [11], The scheme of the operation chamber of the rig is
shown in Fig, 4,
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For the preparation of porous specimens, portland cement of the
marks 200 and 400 was taken withoutthe addition of sand and coarse
aggregates, The addition of water was conducted at maximum water-—
cement ratios, near to the water maintaining capacity of the taken
cements, The specimens were extracted from the moulds after 24 hours
and kept in the air at room conditions up to the moment of conducting
the tests, These specimens had the form of cylinders of 4 cm diameter
and 8 cm height, Before compression each specimen was isolated from
the compressing liquid by a rubber sheath, Three types of specimens
were subjected to testing i
I- cement mark 200, squeezed 3 years after manufactures
II- cement mark 200, squeezed 72 hours after manufacture;

III- cement mark 400, squeezed 72 hours after manufacture.

Fig, 4

Operating chamber for testing the specimens by hydrostatic compression,

Up to the moment of testing, all the specimens had a relative density of

0.44 - 0,56, The relative density was determined by the method of water-
suspension in vacuum, The squeezing of all the specimens lasted for220nﬁnutcs.
The compression in the chamber was given in the range of 50 to 1000kg/cm °

Equation (12') was used to describe the relationship between the
relative density ¢~ of cement stone subjected to hydrostatic compression
and the magnitude of the dimensionless pressure q applied in that case.
This equation was obtained for cubic packing of ideally plastic balls,

As a result of testing the three types of specimens the following
initial values of relative density (7, ), compressive strength (R,),
modulus of elasticity (E ), Pressure at the beginning of plastic deforma-
tion (qn) and the dimensionless parameter characteristic of material (D),
were determined from equation (9):
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] ‘@ Ne cepuf I o m
™ 0,53 0,44 0,58
(}\.
R, xr/cm? 84 43 160
B, xr/cm? 4,3-10 0,87-10% 7-10"
Gn 2:10° o 1,2:10"°
D 5,6 2 24

Key: 1~ Type of specimenj 2- kg/cmz.

Actually, for the specimens of the second type (1II) the value of 9,
should be different from zerQ, But since the value of their initial

strength was only .~ 40 kg/cm”, it was found that ¢,<10°°, In the
given case, this quantity can be neglected,

I 1
— ’
o L~
200 300 400  (3-9.)10!
Fig, 5

Variation of the relative density of cement stone specimens as a result
of hydrostatic compression: I (+) - specimens of cement, mark 200, three
years curing periody II (e) ~ specimens of cement, mark 200, 72 hours
curing periody III (A) - specimens of cement, mark 400, 72 hours curing
period, The solid lines represent the theoretical curves,
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In Fig, 5 the theoretical curves of 2. (q - qn) are compared with
the experimental results of the three types of specimens (denoted by the
corresponding Roman numbers), The calculated data are in good agreement
with the obtained experimental resultis,
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